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Abstract

Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-repre-

sented in population genetic studies, possibly due to the remoteness of these regions that

can only be accessed at extraordinary expense. The genetic signatures of populations in

these boundary regions are therefore largely unknown. We aim to generate organelle refer-

ence genomes for the detection of single nucleotide polymorphisms (SNPs) that can be

used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochon-

drial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula

(northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the

lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84

chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast

haplotype networks show no spatial structure of individuals from different geographic ori-

gins, while the mitochondrial haplotype network shows at least a slight spatial structure with

haplotypes from the Omoloy and Kolyma populations being more closely related to each

other than to most of the haplotypes from the Taymyr populations. Whole genome align-

ments with publicly available complete chloroplast genomes of different Larix species show

that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but

has to be sequenced completely to distinguish the different provenances. We provide 8

novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and

L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/L.

cajanderi group from other Larix species. Our organelle references can be used for a tar-

geted primer and probe design allowing the generation of short amplicons. This is particu-

larly important with regard to future investigations of, for example, the biogeographic history

of Larix by screening ancient sedimentary DNA of Larix.
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Introduction

Deciduous larch (Larix Mill.) forests cover a vast area of about 263.2 million ha in the Russian

Federation [1,2], where they form the light taiga as the only representative with tree growth

form. Despite the relevance of larch as an ecological key species, the long-term history of larch

forests is still poorly investigated. Climate warming in northern Siberia is expected to lead to

northward expansions of larches into areas currently covered by tundra [3–5]. However, popu-

lation responses to climate warming, such as recruitment patterns, are still unclear.

The Siberian treeline is a climatically driven ecotone, in which light taiga gradually opens

up and changes into tundra [1]. This ecotone is located approximately where the mean July

temperature lies between 10˚C and 12.5˚C [5]. It is characterized by a short growing season

and strong seasonality [6]. In central and eastern Siberia, the treeline is formed by Larix gmeli-
nii (Rupr.) Kuzen. from ~90˚ to ~120˚E and Larix cajanderi Mayr from ~120˚ to ~160˚E˚ [1].

The two species are closely related, and L. cajanderi was estimated to have diverged from L.

gmelinii approximately during the Pliocene [7].

Macrofossil and pollen data indicate past climate-induced range contractions of Larix
stands in northern Siberia during glacial periods and expansions during interglacial and inter-

stadial periods [8,9]. Additionally, past biogeography, disturbances (e.g. wildfires, herbivory),

and abiotic (e.g. permafrost distribution and seasonal thaw-depth) and biotic interactions (e.g.

competition, hybridization) have shaped the modern larch stands [10]. However, modern-ana-

log reconstructions of past environments are difficult to interpret as pollen lack morphologi-

cally diverse features to distinguish between closely related larch species [11].

Questions related to drivers of spatio-temporal changes of larch distributions need reliable

discriminators between different Siberian larch species. The analysis of interspecific genetic

variation has already proven successful in delimitating cryptic species [12,13], and could pro-

vide the means to identify larches to species or even population level. Moreover, a genetic

approach could potentially be applied on ancient DNA from sediments [10,14], sub-fossil

macro-remains [15,16], and even single pollen grains [17].

Ancient DNA is highly fragmented to sizes of less than 500 bp and accumulate chemical

damage through time [18,19]. The probability that the target sequence is preserved over time is

generally higher for organelle genomes because of their higher copy numbers per cell in com-

parison to the nuclear genome [14,20]. This makes organelle genomes preferential targets for

ancient DNA studies. A genetic tool to identify larches to species level with simultaneous use

for paleogenetic approaches in sediments has therefore several requirements: (1) it should be

located on the chloroplast or the mitochondrial genome, (2) the diagnostic feature should focus

on single nucleotide polymorphisms (SNPs), which are short and not too sensitive to sequenc-

ing errors, and (3) the target region must allow for the design of highly specific primer pairs

that generate short amplicons and which avoid co-amplification of non-target genes and non-

target species. Ideally, our target amplicon size should vary between 60 to 150 bp so that primers

can also be used for High Resolution Melt Curve analysis to screen modern populations.

In Larix, like in most conifers of the Pinaceae family, the organelle genomes are haploid

and inherited uniparentally. While the chloroplast genome is inherited paternally through

pollen [21], the mitochondrial genome is inherited maternally [22] through the seeds.

Therefore, the organelle genomes allow the distinction between paternal and maternal geneal-

ogies [23]. Structurally, the chloroplast genomes of larches are organized circularly and vary in

size: 122,474 bp (Larix decidua Mill. [24], Accession: NC_016058.1), 122,492 bp (Larix potani-
nii var. chinensis (Voss) L.K.Fu & Nan Li [25], Accession: KX880508.1), 122,560 bp (Larix
sibirica Ledeb., Accession: NC_036811.1), 122,583 bp (Larix occidentalis Nutt., Accession:

MH612855.1 [26]) and 122,553–122,598 bp (Larix gmelinii var. japonica (Maxim. ex. Regel)
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Voss [27], Accession: LC228570 - LC228572). Mitochondrial genomes have a more complex

organization than chloroplast genomes and contain between three to about 50 times their size

in gymnosperms [28–31], but in spite of their size they carry only a few protein coding genes

which are mainly components of the oxidative phosphorylation chain [32]. The largest part of

the mitochondrial genome is non-coding and several studies have shown that a circular mas-

ter-chromosome can coexist with (multiple) sub-genomic chromosomes as well as with linear

plasmids [31,32]. Hence, only a few plant mitochondrial genomes are publicly available (search

date 03.12.2018) with Cycas taitungensis C.F. Shen & al. [30], Ginkgo biloba L. [31], Wel-
witschia mirabilis Hook.f. [31], and 36 scaffolds of Picea glauca (Moench) Voss. [28] as the

only gymnosperm representatives.

The aim of this study is to retrieve reference sequences for the detection of genetic variation

between individuals from the tundra-taiga ecotone, covering longitudinally the ranges of L.

cajanderi and L. gmelinii in northern Siberia. In particular, we aim to identify candidate SNPs

suitable for the spatial discrimination of Larix in modern individuals as well as in ancient envi-

ronmental samples. We sequenced and assembled the chloroplast genomes of 19 individuals

from the northern distribution ranges of L. gmelinii (12 individuals) and L. cajanderi (7 indi-

viduals) in Siberia. As there was sufficient sequencing depth we additionally screened de novo
assembled mitochondrial contiguous sequences (contigs) for SNPs. Our study presents new

organelle genome reference sequences that allow the design of novel markers that can be the

starting point for testing hypotheses, for example regarding Larix evolution, past and modern

biogeography, and adaptive responses to changing environments.

Material and methods

Plant material

Plant material was collected from forest-tundra transects in three regions located along a west-

east gradient in North Siberia: on the southern Taymyr Peninsula (~97–105˚E), Lower Omo-

loy River (~132˚E), and Lower Kolyma River (~161˚E) (Fig 1, Table 1). Sites were selected

using satellite images and vegetation maps [33] to include uniform vegetation stands within

three vegetation types: ‘single-tree tundra’, ‘forest-tundra’ (open stands at the northern forest

margin), and ‘closed forest’ [34].

In total, 19 trees were selected for investigation, which were vital, reproductive (indicated

by cones), and at least 3.5 m tall, except for two krummholz individuals from the single-tree

tundra (Table 1). Short twigs with needles were collected and placed in individual filter bags

and dried on silica gel during fieldwork. For each of the four Omoloy sites and the three Lower

Kolyma sites one individual per site was selected, while three individuals per site were sampled

for the southern Taymyr Peninsula to allow both within and between site comparisons. A ref-

erence collection is available at the Alfred-Wegener-Institute Helmholtz Centre for Polar and

Marine Research, Potsdam.

DNA isolation and sequencing

We transferred 20 mg of needles per individual into impact-resistant 2 ml tubes together with

two DNA-free steel beads of 5 mm diameter. The samples were cooled in liquid nitrogen for 3

minutes and ground to powder using FastPrep-24 (MP Biomedicals, USA) for 50 seconds at 4

m s-1. Total genomic DNA was isolated with the DNeasy Plant Mini Kit (Qiagen, Germany)

according to the manufacturer’s protocol with two modifications: (1) we added 9 μl 1 M Dithio-

treitol (VWR, Germany) to each sample during lysis after the RNase treatment and (2) elution

was carried out twice with 100 μl molecular biology grade water (Omnilab, Germany), each

with an incubation time of 5 minutes. The DNA quality was checked by gel electrophoresis and
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Fig 1. Map showing the sampled sites in northeastern Siberia. The Global Vegetation Map showing greenness in July 2014

was retrieved from NASA Earth Observations (https://earthobservatory.nasa.gov/global-maps/MOD_NDVI_M) and the

treeline shape file was retrieved from the Circumpolar Arctic Vegetation Map [35].

https://doi.org/10.1371/journal.pone.0216966.g001
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the DNA concentration was quantified with the Qubit dsDNA BR Assay on the Qubit 2.0 fluo-

rometer (Invitrogen, USA).

The DNA samples were sent to StarSEQ sequencing service (Mainz, Germany) who per-

formed the DNA library preparation, shotgun sequencing, and demultiplexing. Libraries were

built with the TruSeq Nano DNA Library Prep Kit (Illumina, USA), during which each sample

was given a distinct index to sequence several individuals in parallel (medium size of

library = 500 bp). Paired-end sequencing (2 x 150 bp) was performed on an Illumina NextSeq

500 platform (Illumina, USA).

Sequence processing and de novo assembly of chloroplast genomes

The quality check was conducted with FastQC [36] followed by trimming for quality and

residual Illumina adapter sequences with Trimmomatic v. 0.3.2 [37] (settings: sliding window,

window size = 4, average quality = 15, minimum quality to keep a base = 3, minimum length

to keep a sequence = 40 nt). De novo assembly of each individual was carried out with CLC

Genomics Workbench 8.0 (https://www.qiagenbioinformatics.com/) with an automatic word

size, a bubble size of 50, and a minimum contig length of 200 nt. Afterwards, reads were

mapped back to the contigs and the paired-end information was used to join contigs and build

scaffolds. The scaffolds were aligned using the default settings with Geneious v 7.1.9 (http://

www.geneious.com, [38]) to the L. decidua reference genome (Accession no.: NC_016058.1),

the only complete published Larix reference at the time of the assembly (14.04.2015), to keep

only those of putative chloroplast origin. The longest scaffolds (> 40,000 nt) of all individuals

that aligned to the reference genome were overlapping without gaps in the alignment. The

multiple alignment consensus resulted in a circular genome structure. Uncertain regions were

Table 1. List of the sequenced individuals with their NCBI accession number.

Sample code Region Site Latitude

(˚N)

Longitude

(˚E)

Vegetation

zone

Species

range

Sample accession

EH103 Taymyr TY02 72.54861 105.74611 single-tree stands� L. gmelinii MK468646

EH90 Taymyr TY02 72.54896 105.74469 single-tree stands� L. gmelinii MK468638

EH91 Taymyr TY02 72.54865 105.74546 single-tree stands� L. gmelinii MK468639

EH80 Taymyr TY04 72.40889 105.44795 forest line L. gmelinii MK468633

EH83 Taymyr TY04 72.40880 105.44791 forest line L. gmelinii MK468634

EH105 Taymyr TY04 72.40881 105.44818 forest line L. gmelinii MK468648

EH84 Taymyr TY09 72.14373 102.0624 forest line L. gmelinii MK468635

EH85 Taymyr TY09 72.14367 102.06234 forest line L. gmelinii MK468636

EH86 Taymyr TY09 72.14372 102.06265 forest line L. gmelinii MK468637

EH77 Taymyr CH06 70.66506 97.70614 dense forest L. gmelinii MK468630

EH78 Taymyr CH06 70.66496 97.70624 dense forest L. gmelinii MK468631

EH79 Taymyr CH06 70.66485 97.70609 dense forest L. gmelinii MK468632

EH104 Omoloy OMV1 70.74418 132.69852 forest line L. cajanderi MK468647

EH96 Omoloy OMV2 70.72644 132.65817 forest line L. cajanderi MK468643

EH97 Omoloy OMV4 70.52671 132.91426 dense forest L. cajanderi MK468644

EH98 Omoloy OMH3 70.34396 132.90079 dense forest L. cajanderi MK468645

EH94 Kolyma KO05 69.11839 161.02343 single trees on polygonal ridges L. cajanderi MK468642

EH92 Kolyma KO04 69.05129 161.2066 open forest L. cajanderi MK468640

EH93 Kolyma KO02 68.38994 161.449 dense forest L. cajanderi MK468641

Given are the sample codes of the individuals, their corresponding region of origin, the site codes, coordinates, vegetation zone, the published species range from which

the individuals were collected. Krummholz individuals are marked with �.

https://doi.org/10.1371/journal.pone.0216966.t001
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re-sequenced (both inverted repeats including their adjacent regions, the transitions between

contigs, and parts of ycf1). Therefore, we designed specific primer pairs using Primer3web v.

4.0.0 [39,40], with which we generated PCR products for Sanger sequencing (S1 Table). Fur-

thermore, we designed a set of 18 primer pairs (S2 Table) and performed long-range PCRs fol-

lowed by partial re-sequencing of the generated PCR products to validate the chloroplast

genome structure (S3 Table, S1 Fig). The draft genome was then used for reference-guided

assembly of the trimmed reads for each sequenced individual separately using the Burrows-

Wheeler Aligner v. 0.7.12 (BWA-MEM default settings) [41], allowing the estimation of the

coverage at each position of the genome.

Chloroplast genome annotation and variant detection

The draft genome was annotated using cpGAVAS [42] and Geneious. Geneious implements a

BLAST-like algorithm that transfers the annotation from the L. decidua reference genome

based on a minimum similarity threshold of 70%. Transfer RNAs were annotated using

tRNAscan-SE v. 1.21 [43,44]. The circular gene map was created with GenomeVx [45]. Correct

positioning of start and stop codons of genes were checked by translating the coding sequences

with codon translation table 11. A whole genome alignment of all 19 chloroplast genomes was

computed using the progressiveMAUVE v. 2.3.1 [46,47] plugin in Geneious. Single nucleotide

polymorphisms (SNPs) and insertions or deletions (InDels) of the individual genomes in com-

parison to the draft genome were checked through visual inspection, including the coverage at

this position, and false base calls were manually corrected.

Assembly of mitochondrial genomic sequences

For the identification of mitochondrial genomic sequences the complete mitochondrial refer-

ence genomes of land plants (Taxonomy ID: 3193) were downloaded from the National Center

for Biotechnology Information Reference Sequence database (NCBI RefSeq, access date:

19.10.2017) [48] and combined with the 36 scaffolds of the Picea glauca mitochondrial genome

[28]. The reference sequences were used to pre-filter the trimmed paired and unpaired reads

for putative mitochondrial sequences using Bowtie2 v. 2.2.5 [49] with the preset-option “very

sensitive” in the local alignment mode. SPAdes v. 3.6.2 [50] was used to test different k-mer

sizes and choose the best for each individual for de novo assembly. BayesHammer [51],

which is implemented in SPAdes was used for error correction and assembly statistics were

produced with QUAST v. 3.1 [52]. The generated contigs (accessible under NCBI BioProject

PRJNA528429) were then aligned against the 36 scaffolds of Picea glauca (NCBI accession

numbers.: LKAM01000001.1- LKAM01000036.1), the closest published relative to the genus

Larix, as well as to the Cycas taitungensis (NCBI accession No.: AP009381.1) mitochondrial

genome using Geneious (mapping parameters: maximum gaps per read = 10%, maximum gap

size = 50, word length = 24, maximum mismatches = 20%) and surveyed for SNPs. As our aim

is the detection of SNPs that can be used in the screening of environmental and ancient sam-

ples, we avoided conceivably paralogous sequences as this would likely lead to unspecific

amplification during PCR. In addition, the sequence alignment containing an SNP had to be

unambiguously represented by at least 6 individuals and the second SNP variant had to be

present at least three times to be robust or, in cases where the variant information was present

for all individuals, at least two times.

Analyses of genetic variation

In comparison to phylogenetic trees, haplotype networks allow for the introduction of loops

and can thus display alternative genealogical relationships at the intraspecific population level
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with low divergence [53,54]. We estimated haplotype networks for the chloroplast (cpDNA)

and mitochondrial (mtDNA) datasets respectively by computing absolute pairwise distances

and used a statistical parsimony approach with TCS [53,54] implemented in PopART v. 1.7

(Population Analysis with Reticulate Trees [55]). Only SNPs were included in the distance

matrix used for generating the haplotype networks.

Results

Chloroplast genome structure and genetic variation

Sequencing generated a total of 907,800,000 reads of which 80.8% passed trimming, and

62,338,218 paired reads showed the expected insert size and correct relative orientation. Maxi-

mum contig lengths obtained by the individual assemblies ranged between 43,219 nt and

117,053 nt. The draft chloroplast genome had a length of 122,590 nt resulting in a circular

form with a GC-content of 38.74% (Fig 2). The sizes of the assembled chloroplast genomes dif-

fer slightly between 122,581 nt and 122,593 nt due to InDels and length differences of homo-

polymer stretches. Minimum coverage per base among all individual genomes varies between

35x (EH93-KO02) and 188x (EH80-TY04). The small single copy (SSC) region is composed of

Fig 2. Circular gene map of the L. gmelinii and L. cajanderi chloroplast draft genome (122,590 nt). Genes outside

the circle are transcribed clockwise while genes inside the circle are transcribed counter-clockwise. Pseudogenes are

marked withC.

https://doi.org/10.1371/journal.pone.0216966.g002
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56,387 nt and thus almost as long as the large single copy (LSC) region of 57,664 nt. Following

Wu et al. [24] the Larix chloroplast can be structured into three regions of which the pseudo-

gene CtrnG-GCC is defined as the border of the F2 region. This pseudogene was not predicted

by tRNAscan-SE in the expected region, but between psbZ and trnfM-CAU. The retained but

highly reduced inverted repeat (IR) regions are 306 nt long, containing only 3’psbA and trnI-
CAU. A further inverted repeat of 481 nt length contains psbI and trnS-GCU and is located

within the LSC. The genome encodes for 71 genes, 31 different transfer RNAs of which three

are present with two copies, four ribosomal RNA genes, five putative genes of unknown func-

tion (ycf), and ten pseudogenes, which are mostly composed of NADH dehydrogenase pseudo-

genes (Table 2).

Protein coding sequences account for 49.9% of the genome, transfer RNAs (tRNAs) for

2.1%, and ribosomal DNAs for 3.7%, while 44.3% of the genome is non-coding (S3 Table).

Five genes (rpoC1, petD, rpl16, rpl2, atpF) and six tRNAs (trnA-UGC, trnG-GCC, trnI-GAU,

trnK-UUU, trnL-UAA, trnV-UAC) contain one intron and ycf3 contains two. The 31 tRNAs

cover all amino acids. The tRNAs trnI-CAU and trnT-GGU have inverted repeats of each

other while trnG-GCC has a pseudogene copy.

The whole chloroplast genome alignment revealed 84 SNPs (Fig 3), one stem-loop inver-

sion of 3 nt length (AGA$TCT), five InDels (S 7), and 17 homopolymer stretch differences

Table 2. Genes encoded by the L. gmelinii and L. cajanderi chloroplast genomes.

Group Name of gene

ribosomal RNA genes rrn4.5 rrn5 rrn16 rrn23
transfer RNA genes trnA-UGCa trnC-GCA trnD-GUC trnE-UUC trnF-GAA trnfM-CAU

trnG-GCC trnH-GUG trnI-GAUa trnI-CAUb trnK-UUUa trnL-CAA

trnL-UAAa trnL-UAG trnM-CAU trnN-GUU trnP-GGG trnP-UGG

trnQ-UUG trnR-ACG trnR-CCG trnR-UCU trnS-GCUb trnS-GGA

trnS-TGA trnT-GGTb trnT-UGU trnV-GAC trnV-UACa trnW-CCA

trnY-GTA

30S ribosomal protein rps2 rps3 rps4 rps7 rps8 rps11
rps14 rps15 rps18 rps19

50S ribosomal protein rpl2a rpl14 rpl16a rpl20 rpl22 rpl23
rpl32 rpl33 rpl36

photosynthesis atpA atpB atpE atpFa atpH atpI
petA petB petDa petG petL petN
psaA psaB psaC psaI psaJ
psbA psbB psbC psbD psbE psbF
psbH psbIb psbJ psbK psbL psbM
psbN psbT psbZ rbcL

chlorophyll biosynthesis chlB chlL chlN
transcription/translation

component genes

rpoA rpoB rpoC1a rpoC2 infA matK

others accD ccsA cemA clpP
unknown function ycf1 ycf2 ycf3a ycf4 ycf12
pseudogenes CndhBc CndhCc CndhDc CndhHc CndhKc Crps4c

Crps12 (5’ end)c Crps12 (3’ end)c CpsbA (3’ end)c

CtrnG-GCCc

aGenes with introns
bGenes with two copies
cPseudogenes

https://doi.org/10.1371/journal.pone.0216966.t002
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(12x poly(T), 4x poly(A), 1x poly(C)). More than half of the SNPs (56%) are transversions

(25% A$C, 2.4% A$T, 26.2% G$T, 2.4% G$C) while 44% of the SNPs are transitions (25%

A$G, 19% C$T). The majority of the SNPs occurred only once (singletons). There are 27

SNPs located in coding regions, one of these in a transfer RNA gene. Out of the SNPs in coding

regions, 8 result in a change of the translated amino acid sequence of which, in three cases, the

amino acid property is also changed (Table 3). The two genes ycf1 and ycf2 encompass 10.5%

of the whole genome, but contain 11.9% of all SNPs. In non-coding regions we detected 57

SNPs, of which 41 were singletons. The number of pairwise differences between the chloro-

plast genomes ranges from a minimum of 0 between EH92-KO04 and EH94-KO05 to a maxi-

mum of 57 between EH83-TY04 and EH84-TY09. Individuals from the southern Taymyr

Peninsula exhibit less (between 1 and 57, mean 19) pairwise differences in comparison with

those from the Omoloy and Kolyma regions (between 0 and 34, mean 23). Among all individ-

uals, EH83-TY04 has the most pairwise differences to all other individuals due to 21 unique

SNPs (Fig 3).

Fig 3. Concatenated alignment showing the 84 SNPs, with their position in the whole genome alignment of all sequenced individuals with the L. decidua
reference. The 22 non-unique SNPs are shaded in gray. If a SNP is located within a gene or intron the corresponding gene name is given in the first row. Non-

synonymous SNPs are marked by an asterisk (�). The nucleotides are shown in different colors (A = green, T = blue, C = purple, G = black).

https://doi.org/10.1371/journal.pone.0216966.g003

Table 3. Chloroplast genes with non-synonymous SNPs, their position in the protein sequence and changes in

amino acid properties.

Gene Position Change Amino acid property changes

accD 91 Arginine (R)—Cysteine (C) Basic—Cytosine

atpA 139 Serine (S)—Alanine (A) Hydrophile—hydrophile

chlL 282 Glutamine (Q)—Lysine (K) Acid/amid—basic

petL 44 Lysine (K)—Glutamine (Q) Basic—Acid/amid

rps15 63 Valine (V)—Isoleucine (I) Hydrophobe—hydrophobe

ycf1 1525 Isoleucine (I)—Leucine (L) Hydrophobe—hydrophobe

ycf1 1559 Leucine (L)—Isoleucine (I) Hydrophobe—hydrophobe

ycf2 459 Proline (P)—Serine (S) Hydrophile—hydrophile

https://doi.org/10.1371/journal.pone.0216966.t003
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The cpDNA based TCS haplotype network shows no spatial structure between haplotypes

collected from the Taymyr, Omoloy, and Kolyma regions (Fig 4A). The haplotypes are divided

into two groups with one intermediate haplotype (EH84-TY09) between both groups. Haplo-

types of the first group, shown in the upper part of the haplotype network, exhibit 43 unique

SNPs, which correspond to 51.2% of all detected SNPs. The haplotypes of the second group,

shown in the lower part of the haplotype network, are more closely related to each other in

comparison to the haplotypes of the first group and display 18 singletons (21% of all SNPs).

A whole chloroplast genome alignment, which included not only the individuals sequenced

in this study, but also all available complete Larix chloroplast genomes on NCBI, was then

Fig 4. Statistical parsimony haplotype networks for (A) chloroplast single nucleotide polymorphisms (SNPs) and (B)

mitochondrial SNPs with haplotypes as circles, whose size is proportional to the number of individuals exhibiting this

haplotype. Circles are colored according to their region of origin while small black circles represent estimated putative

intermediate haplotypes. Hatch marks along the edges indicate mutations between the nodes. Loops indicate alternative

pathways in the genealogy.

https://doi.org/10.1371/journal.pone.0216966.g004
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used to compare the SNP variants detected in this study with different Larix species. In the

majority of non-singleton SNPs the haplotypes of the group shown in the upper part of the

network (Fig 4A) carry the same variant as other Larix species whereas the group in the lower

part of the network carries the potentially derived variant. At two positions—one in the 4.5S

rRNA gene and one at a non-coding site—can the individuals sequenced in this study be dis-

tinguished from all other Larix genomes in the alignment, except for EH83-TY04, which

shares the putatively ancestral variant at these positions.

Genetic variation in mitochondrial sequences

For each individual we retrieved between 1,728 and 5,000 assembled contigs of maximum

sizes between 5,356 and 18,252 bp. A total of 52,765 contigs were generated of which 15,576

aligned to the Picea glauca scaffolds, except for scaffolds 28, 31, 35, and 36 where none of the

assembled contigs aligned. A general problem was that only relatively short contigs aligned,

leaving large gap stretches. The mapping resulted in the retrieval of 59 mostly partial genes

(Table 4).

Among the mapped contigs, we detected a total of 213 SNPs, of which 172 were detected in

non-coding regions (S4 Table). At 8 non-coding positions, we detected SNPs with one variant

present only in individuals from the southern Taymyr Peninsula and the other variant only in

those from the Lower Omoloy and Lower Kolyma regions (Table 5). Unfortunately these SNP

positions are covered only by some of the individuals. We detected 16 SNPs which were repre-

sented by all sequenced individuals and were used to compute a statistical parsimony-based

haplotype network (Fig 4B). Haplotypes within the Omoloy population are mostly closely

related to each other as indicated by their close proximity in the haplotype network. The haplo-

types of the Kolyma populations are more closely related to the Omoloy haplotypes than to

each other, as the Omoloy haplotypes are placed between them. From the Taymyr population

Table 4. Genes detected among L. gmelinii and L. cajanderi mitochondrial sequences.

Group Name of genes

Respiratory chain

Complex I (NADH dehydrogenase) nad1 nad2 nad3 nad4 nad4a
nad4L nad5 nad6 nad7 nad9

Complex II (Succinat dehydrogenase) sdh3
Complex III (Cytochrome c reductase) cob
Complex IV (Cytochrome c oxidase) cox1 cox2 cox3
Complex V (ATP synthase) atp1 atp4 atp6 atp8 atp9
Cytochrome c maturation factors ccmB ccmC ccmFC1 ccmFC2 ccmFN
Ribosomal protein

large subunit rpl10 rpl16 rpl2 rpl5
small subunit rps1 rps10 rps11 rps12 rps13

rps14 rps19 rps2 rps3 rps4
rps7

rRNA rrn18 rrn26 rrn5
tRNA trnC-GCA trnD-GUC trnE-UUC trnH-GUG trnM-CAU

trnN-GUU trnP-AGG trnP-UGG trnQ-UUG trnR-UCG
trnW-CCA trnY-GUA

Photosystem I psaA
others matR mttB
putative gene with unidentified function ymfcob

https://doi.org/10.1371/journal.pone.0216966.t004
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most haplotypes are relatively closely related and connected with each other displaying alterna-

tive genealogical pathways. According to the network, the Taymyr haplotypes form two dis-

tinctive groups, with the Omoloy and Kolyma haplotypes between them.

Discussion

De novo assembly of chloroplast genomes and mitochondrial sequences

In this study 55.7% of the Larix chloroplast genome was composed of coding sequences, which

is comparable to other conifers (e.g. L. decidua: 56.0% coding [24], Picea spp. on average cod-

ing: 55.2% [56]). The structural arrangement and gene content of the assembled chloroplast

genomes are both similar to L. decidua, which facilitated the contig arrangement in the assem-

bly process and annotation, and is in agreement with Wu et al. [24] who showed that the

genus Larix has a distinct structure within the Pinaceae family. The overall size of the gener-

ated draft genome (122,590 nt) is 116 nt larger than the sequence of L. decidua, while the IR

regions (306 nt), which are typically reduced in Pinaceae, are smaller than those of L. decidua
(436 nt) [24], L. potaninii var. chinensis (435 nt) [25], Picea morrisonicola (440 nt), and Pinus
wilsoniana (345 nt), but larger than those of Cedrus deodara (236 nt) and Keteleeria davidiana
(267 nt) [57].

The mitochondrial genome could not be fully recovered despite its multi-copy presence

within plant cells. With regard to gymnosperms, the mitochondrial genomes of Picea glauca
(5.9 Mb [28]) and Picea abies (> 4.3 Mb [29]) are amongst the largest ones that have been pub-

lished for land plants ([29]), followed in size by Welwitschia mirabilis (979 kb [31]), whereas

Table 5. List of putatively diagnostic mitochondrial SNPs.

scaffold 1 4 6 6 11 15 17 20

position 1023485 65316 194010 325675 95116 5654 36760 27703

EH77-CH06 A G - C A A - A

EH78-CH06 A G A C A A C A

EH79-CH06 A - A C - A - -

EH80-TY04 A G A C A A - A

EH83-TY04 A G A - A A C -

EH105-TY04 - G A - A A - -

EH84-TY09 A - - - A - C -

EH85-TY09 A G A - A A - -

EH86-TY09 A - - C A A C -

EH90-TY02 A - A C - A C A

EH91-TY02 A G A C A A - A

EH103-TY02 A - A C - A - A

EH92-KO04 C T C A G - T C

EH93-KO02 C T C - G - - -

EH94-KO05 C T C A G C T C

EH96-OM2 C T C A G C - -

EH97-OM4 C T C A G C T C

EH98-OMh3 C - C A G C T C

EH104-OM1 C T - A G C T C

Picea glauca G G C C A A C A

The location of the SNPs is given by the scaffold of the Picea glauca reference genome and the position on the scaffold in the alignment. For each individual as well as

the reference genome the corresponding SNP variant is shown if sequence information was present.

https://doi.org/10.1371/journal.pone.0216966.t005
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Cycas taitungensis (414 kb [30]) and Ginkgo biloba (347 kb [31]) are much smaller. Still, their

sizes suggest that the mitochondrial genome of Larix is also quite large and might contain a

high structural complexity. The generated contigs aligned only in a few conserved parts scat-

tered across the scaffolds of P. glauca and even less across the C. taitungensis reference genome,

suggesting that most parts of the Larix mitochondrial genome have evolved differently. The

contigs were short overall and those which aligned to the P. glauca genome mostly had a mean

coverage below 5x. If the complete mitochondrial genome is the aim of the sequencing, the

sample could be enriched for mitochondria and/or a larger sequencing depth would be neces-

sary. Furthermore, paired-end sequencing could be coupled with mate-pair sequencing follow-

ing, for example, Jackman et al. [28]. Many sequences orthologous to P. glauca displayed two

different versions of the sequences (with small InDels and several SNPs) and both sequence

variants were often represented by the same individual, indicating false alignment of paralo-

gous sequences. These were discarded as such parts would inflate nucleotide diversity and

result in a wrong phylogeny [58,59].

In comparison to the genetic variation in coding regions of the chloroplast, less genetic vari-

ation was found in mitochondrial coding regions. A highly efficient repair mechanism is cur-

rently proposed as the reason for the generally low mutation rate in plant mitochondrial

genomes [11]. Nevertheless, we retrieved 172 SNPs in non-coding regions of putative mito-

chondrial origin, making the small amount of new sequence information highly valuable. For

example, it can be used to design primers or hybridization probes to screen the identified poly-

morphisms not only on a broader geographic scale in extant populations, but also back in time

using permafrost or lake sediment cores, for example, as recently shown by Epp et al. [10] and

Zimmermann et al. [60].

SNP detection of Larix at the tundra-taiga ecotone and marker evaluation

for paleogenetic investigations

For L. gmelinii and L. cajanderi various molecular markers have been used to infer genetic

structure among extant populations [7,23,61–63], identify glacial refugia [23], or to investigate

the phylogenetic relationship of the genus [64–66]. Larix populations at the tundra-taiga eco-

tone though, remain under-represented or are not considered at all in these studies, probably

due to the remoteness and difficult accessibility of these regions. Recent and past dynamics in

these boundary regions are therefore largely unknown. Many of these studies had to rely on

references of distantly-related taxa for their marker design, since species-specific reference

genomes for these dominant Asian larch species are not available. Our chloroplast and mito-

chondrial genomic data can therefore provide a basis for the development of new genetic

markers to analyze larch population dynamics at various spatio-temporal scales.

The detected number of SNPs comprised approximately 0.07% of the draft genome. This is

to be expected in closely related species such as Larix, because the major part of the genome

comprises coding sequence information for physiologically important processes of the photo-

synthesis machinery [67] and is thus essential for survival. Approximately 8% of all variable

positions are located in the ycf1 region, whose elevated substitution rate has been reported in

several plant species before (among conifers:[24,25,57]) and even proposed as a putative plant

plastid barcode [68]. The future applicability of this region as a genetic marker for Larix is,

however, limited, since highly repetitive motifs, inversions, and large InDels prevent the design

of specific primer pairs to produce short amplicons. Regardless, the comparison with publicly

available whole chloroplast genomes revealed four positions where the 19 sequenced individu-

als display a different variant, only with the exception of individual EH83-13TY04. In the

future these SNPs could be evaluated for their potential as diagnostic markers to distinguish
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individuals from the range of L. gmelinii/L. cajanderi from other Larix species in hybridization

zones. Officially, rbcL and matK are the recommended plant barcoding genes [69,70] while the

short P6-loop of the trnL-UAA intron [71] is commonly used for vascular plant DNA meta-

barcoding, for example from ancient and modern sediments [10,11,72,73] or animal diet

[74,75]. Across matK, two SNPs were detected that might be diagnostic for either L. sibirica or

L. occidentalis, whereas all other compared sequences were identical. The short P6-loop of the

trnL-UAA intron shows only one known polymorphic site in L. sibirica that could be diagnos-

tic for this species [76]. Only by using the complete rbcL gene sequence (size: 1428 bp) is it pos-

sible to distinguish the published genomes from the ones generated in this study, but it is not

possible to spatially separate the individuals sequenced here from each other or even from L.

gmelinii var. olgensis. This is, however, not surprising as even the complete chloroplast

genomes from the sequenced individuals cannot be used to separate them geographically.

The mitochondrial haplotype network showed at least some spatial structure with haplo-

types from the Omoloy and Kolyma populations being more closely related to each other than

to most of the haplotypes from the Taymyr populations. Although haplotypes from the Tay-

myr populations seem to have diverged into two groups with haplotypes from the Omoloy and

Kolyma regions lying between them, we detected 8 SNPs that displayed one variant in individ-

uals sampled in the Taymyr region while the other variant occurred only in those from the

Omoloy and Kolyma regions. As these SNPs are not supported by coverage from all individu-

als and as our sample size is very low their applicability as a potentially diagnostic marker

needs to be tested. This would still not resolve the lack of spatial separation of Larix popula-

tions at the northern distribution limit.

The absence of a clear spatial structure in the chloroplast genome and, for the Taymyr indi-

viduals, the mitochondrial genome is in contrast to our expectations. First, L. gmelinii and L.

cajanderi have been suggested to be a progenitor-derivative species pair [7,77]. Second, as

mitochondrial genomes are transmitted through seeds, and parentage analysis of Larix nuclear

microsatellites from the southern Taymyr Peninsula suggest median seed dispersal distances

of about 10 m [78], we anticipated a clear spatial structure at least based on mitochondrial

polymorphisms. Third, even though chloroplast DNA is wind-dispersed by pollen, it is aston-

ishing that no spatial structure can be found over such a vast longitudinal distance, which

ultimately leads to the question, how is this possible? The longevity of Larix trees, their pre-

dominantly outcrossing mating system, the wind-dispersed pollen, and their life-long repro-

ductive capacity after reaching maturity are strategies to maintain a high genetic diversity

within populations [79]. Furthermore, Larix has large population sizes in Siberia without any

competition from evergreen conifers and broadleaved trees over most of its range. Typically,

these traits result in a higher genetic diversity within populations than among them in compar-

ison to other growth forms [79]. This was recently shown for Larix on the southern Taymyr

Peninsula in a study based on nuclear microsatellite markers, where low genetic differentiation

of sub-populations was indicative of region-wide high gene flow [80], despite their relatively

low pollen productivity and proclaimed limited dispersal capacity in comparison to other

Pinaceae species with wind-dispersed pollen [81,82]. Furthermore, Polezhaeva et al. [23] who

also found shared chloroplast and mitochondrial haplotypes among Larix across northeast

Asia based on chloroplast single sequence repeats (SSR) and mitochondrial restriction frag-

ment length polymorphisms (RFLP), suggest that large population sizes and long generation

times could promote the sharing of ancestral polymorphism among different Larix species.

This might explain the lack of spatial structure for the chloroplast genomes.

The southern Taymyr Peninsula has been described as a possible hybridization zone

between L. gmelinii and L. sibirica. Semerikov et al. [7] propose that L. gmelinii expanded into

the range of L. sibirica after the Last Glacial Maximum. The neutral model of Currat et al. [83],
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predicts that introgression follows predominantly from the established species to the invading

species and affects mostly organelle genomes experiencing low gene flow, such as the mito-

chondrial genome. Based on this assumption we hypothesize that the four individuals showing

more distantly related haplotypes in the upper part of the mitochondrial haplotype network

that also carry the L. gmelinii/L. cajanderi chloroplast genome might be either hybrids between

L. gmelinii and L. sibirica or they might be introgressed after back-crossing with one of the

parental species that hybridized. This could be tested in the future by analyzing nuclear genetic

variation in these individuals [23,84], as the nuclear genome of L. sibirica has just been pub-

lished [85] and work regarding the mitochondrial genome is in progress.

Finally, the chloroplast haplotypes display two star-like patterns in the lower part of the net-

work. Star-like patterns are usually deduced as a result of population expansion following Slat-

kin and Hutchinson [86]. Consequently, the pattern could point towards two separate

population expansion events, which is a further hypothesis that can be explored in future

investigations.

Conclusions and future directions

The Russian Far Northeast is characterized by notable environmental changes over a wide

range of time-scales that probably originate from complex interactions between climate, per-

mafrost and biota along with time-lags [87] and feedback mechanisms [88]. Genetic signatures

of modern populations are only a snapshot in time and can thus only provide a limited under-

standing about past processes, the identification of glacial refugia, or the gain and loss of

genetic variability. Natural archives such as permafrost or lake sediments often contain pollen

or macrofossil evidence of Larix [8,9,89,90] and, even in the absence of macrofossils, traces of

ancient DNA can be found. The de novo assembled organelle reference genomes, the novel

polymorphisms we detected, and the derived chloroplast and mitochondrial haplotype net-

works presented in this study could be the starting point for more detailed investigations by

screening modern populations across northeast Asia, and by screening ancient Larix DNA

from sediments, single pollen grains, or macrofossils. Therefore, the generated sequence infor-

mation provides a basis to design more specific genetic markers and probes for the targeted

enrichment of the desired sequences from ancient samples. This would allow tracing haplotype

changes not only in space but also back in time, which in turn would allow hypothesis testing,

for example about the timing and extent of glacial range contractions and post-glacial popula-

tion expansions including their genetic consequences (founder events, bottleneck effects) or

about the biogeographic history, including possible competition between different Larix spe-

cies during range expansions [7,10].
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