На правах рукописи

Алексеев Валентин Николаевич

Многомасштабные методы для задач течения и переноса в неоднородных средах

Специальность: 1.2.2. – Математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена на кафедре «Вычислительные технологии» Института математики и информатики $\Phi \Gamma AOY$ ВО «Северо-Восточного федерального университета имени M.K. Аммосова».

Научный руководитель: Васильева Мария Васильевна

кандидат физико-математических наук, доцент

Официальные оппоненты: Савенков Евгений Борисович,

доктор физико-математических наук, ведущий научный сотрудник института

прикладной математики им. М.В. Келдыша РАН

Муравлёва Екатерина Анатольевна,

кандидат физико-математических наук, старший научный сотрудник АНОО ВО

«Сколковский институт науки

и технологий», г. Москва

Ведущая организация: ФИЦ КНЦ СО РАН, г. Красноярск

Защита состоится 23 декабря 2021 года в «16:00» часов на заседании диссертационного совета 24.2.396.02 при СВФУ им М.К. Аммосова по адресу: 677000, г. Якутск, ул. Белинского, 58, зал заседаний Ученого совета.

С диссертацией можно ознакомиться в научной библиотеке СВФУ им. М.К. Аммосова, 677000, г. Якутск, ул. Белинского, 58 и на сайте университета по адресу

https://www.s-vfu.ru/upload/iblock/fde/fde23ccba8bfa252aeaa 5aae2b4e49e1.pdf

Автореферат разослан «19» октября 2021 г.

Ученый секретарь диссертационного совета, к.ф.-м.н.

Степанов С.П.

Общая характеристика работы

Актуальность работы. Большинство процессов в реальных приложениях имеют многомасштабную природу за счет неоднородных свойств среды, а также разномасштабной природы происходящих процессов. Неоднородности могут быть связаны с перфорированными средами, тонкими областями, неоднородными средами со множеством масштабов и высокой контрастностью, и т.д. Многие прикладные задачи, такие как течение жидкости в пористой среде на уровне пор, связаны с перфорированными областями, где перфорационные отверстия могут иметь различные размеры и геометрию. На перфорациях также могут возникать неоднородные граничные условия при моделировании в масштабе пор и имитации реагирующего потока через пористую среду. Эти задачи имеют большое значение для множества приложений в физике, биологии, геологии и химии. Методы решения этих задач требуют высокого разрешения. В частности, дискретизация должна учитывать нерегулярные границы перфорации. Также во многих приложениях прикладные задачи имеют большие различия в свойствах среды. В этих задачах обычно наблюдается высокий контраст свойств среды, где контраст - это отношение между наибольшим и наименьшим значениями свойств среды. Например, течение и перенос в неоднородных средах используется для описания потока жидкости в пористой среде при моделировании коллектора и т.д. Наряду с этим во многих реальных приложениях встречаются математические модели в тонких областях. Течение жидкости и перенос в тонких трубчатых структурах широко используются в биологических приложениях, например, для моделирования кровотока в сосудах. При моделировании резервуара тонкие области связаны с трещинами, которые обычно имеют сложную геометрию с очень малой толщиной по сравнению с типичными размерами резервуара. Для решения данного типа задач прямые методы требуют построения численных методов на неструктурированных расчетных сетках с разрешением неоднородностей на уровне сетки и приводят к большим дискретным системам, являющимся вычислительно трудоемкими. Прямое численное решение таких задач затруднено даже с появлением суперкомпьютеров. Требуется огромный объем компьютерной памяти и процессорного времени, что легко может превысить лимит сегодняшних вычислительных ресурсов. Следовательно, для данного класса задач необходимо разработать методы для понижения размерности системы с сохранением точности метода для проведения эффективных вычислений на грубой сетке. Многомасштабные методы позволяют аппроксимировать поставленную задачу на грубых сетках с использованием специальных многомасштабных базисных функций, учитывающих локальные неоднородности на микромасштабе. Использование построенных многомасштабных аппроксимаций позволяет существенно сократить время выполнения работы программы, объем используемой памяти и позволяет провести многовариантный расчет для заданной конфигурации геометрии области.

Цель диссертационной работы состоит в разработке алгоритмов и вычислительной реализации многомасштабных методов для решения задач течения и переноса в неоднородных, перфорированных и тонких областях. Для достижения поставленной цели сформулированы следующие задачи:

- Разработка и исследование алгоритма обобщенного многомасштабного метода разрывного Галеркина для решения: (1) задач в перфорированных и тонких областях с неоднородными граничными условиями на перфорациях; (2) задачи Стокса в перфорированных и тонких областях; (3) задачи тепломассопереноса с моделью Бринкмана в неоднородной области;
- Разработка и исследование алгоритма смешанного обобщенного многомасштабного метода конечных элементов для решения: (1) задач течения и переноса в перфорированных областях; (2) упрощенной задачи магнитной гидродинамики в перфорированных областях.

Научная новизна и практическая значимость. Научная новизна проведенных исследований заключается в следующем:

- Разработан обобщенный многомасштабный метод разрывного Галеркина для задач течения и переноса в тонких и перфорированных областях с учетом неоднородных граничных условий;
- Представлен смешанный обобщенный многомасштабный метод конечных элементов для задачи течения и переноса в перфорированных областях;
- Построен смешанный многомасштабный метод конечных элементов для упрощенной задачи магнитной гидродинамики в перфорированных областях.
- Проведена численная реализация математической модели Бринкмана и процессов тепломассопереноса в неоднородных средах на основе обобщенного многомасштабного метода разрывного Галеркина.

Приведённые многомасштабные методы и численные расчёты имеют практи-

ческую значимость в построении математических моделей и исследовании процессов течения и переноса в перфорированных, тонких и неоднородных средах.

Методология и методы исследования. Решение задач течения и переноса основано на методе конечных элементов на неструктурированных расчетных сетках с использованием следующих методов: смешанный метод конечных элементов, разрывный метод Галеркина, обобщённый многомасштабный метод разрывного Галеркина, смешанный обобщенный многомасштабный метод конечных элементов. Для построения расчетной области с расчетной сеткой используется генератор сеток Gmsh. Численная реализация основана на библиотеке FEniCS с использованием языка программирования C++.

Положения, выносимые на защиту:

- Обобщённый многомасштабный метод разрывного Галеркина для задач в перфорированных областях с неоднородными граничными условиями на границах перфораций. Модификация метода в виде дополнительных многомасштабных базисных функций для учета граничных условий Робина на перфорациях. Построение и исследование метода для различных классов задач (эллиптические и параболические уравнения, уравнения упругости и термоупругости, уравнение конвекции-диффузии);
- Обобщённый многомасштабный метод разрывного Галеркина для задач течения и переноса в тонких областях с неоднородными граничными условиями Робина. Модификация метода в виде дополнительных многомасштабных базисных функций для учета граничных условий Робина на стенках рассматриваемой области;
- Алгоритм обобщённого многомасштабного метода разрывного Галеркина для модели Бринкмана и процессов тепломассопереноса в неоднородных средах;
- Алгоритм смешанного обобщённого многомасштабного метода конечных элементов для упрощенной задачи магнитной гидродинамики в перфорированных средах в смешанной формулировке для магнитного поля.

Обоснованность и достоверность результатов обеспечена использованием корректно построенных математических моделей, подтверждена вычислительными экспериментами, которые приближены к реальным, а также путем сравнения результатов, полученных с использованием предлагаемых моделей и методов, с результатами прямого численного моделирования методом конечных

элементов на эталонной сетке.

Апробация работы. Основные результаты диссертации были представлены на следующих конференциях:

- Международная конференция "Многомасштабные методы и высокопроизводительные научные вычисления", г. Якутск, Россия, 30.07.2017 -04.08.2017;
- The Seventh Conference on Finite Difference Methods: Theory and Applications, г.Албена, Болгария, 20.06.2018 25.06.2018;
- The Tenth Jubilee Conference of the Euro-American Consortium for Promoting the Application of Mathematics in Technical and Natural Sciences, г. Лозенец, Болгария, 11.06.2018 - 18.06.2018;
- Международная конференция "Многомасштабные и высокопроизводительные вычисления для мультифизичных задач", г.Якутск, Россия, 08.08.2018 10.08.2018;
- II Международная конференция "Многомасштабные методы и высокопроизводительные научные вычисления", г. Москва, Россия, 15.08.2018 -17.08.2018;
- IV Международная конференция "Суперкомпьютерные технологии математического моделирования", г. Москва, Россия, 19.05.2019 21.05.2019;
- Международная конференция "Многомасштабные и высокопроизводительные вычисления для мультифизичных задач", г.Якутск, Россия, 24.05.2019 25.05.2019;
- III Международная конференция "Многомасштабные методы и высокопроизводительные научные вычисления", г. Владивосток, Россия, 07.10.2019 - 11.10.2019;
- Применение цифровых технологий в промышленности, бизнесе и здравоохранении Республика Саха, г.Якутск, Россия, 23.12.2019 25.12.2019;
- IV Международная конференция "Многомасштабные методы и высокопроизводительные научные вычисления", г. Сочи, Россия, 08.09.2020 -13.09.2020.

Публикации. По теме диссертации опубликовано 16 научных работ в рецензируемых научных изданиях, входящих в перечень ВАК (ВАК, Scopus и Web of Science), получены 2 свидетельства о государственной регистрации программ для ЭВМ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Личный вклад автора. В работах, опубликованных в соавторстве, личный вклад диссертанта состоит в следующем: в работах [1, 4, 5, 7, 8, 11, 12, 14] им разработан и реализован вычислительный алгоритм, проведены расчеты и анализ результатов вычислительных экспериментов; в работах [6, 13, 16] диссертант участвовал в разработке и численной реализации математической модели. В работах [2, 3, 9, 10, 15] автор принял участие в постановке математической модели и численной реализации. Подготовка к опубликованию полученных результатов проводилась совместно с соавторами.

Структура и объем диссертации. Работа состоит из введения, пяти глав, заключения и списка литературы. Общий объём диссертационной работы составляет 164 страницы, содержит 59 иллюстраций и 28 таблиц. Список литературы содержит 116 наименований.

Работа была поддержана Мегагрантом Правительства РФ 14. Y 26.31.0013, грантом РНФ 19-11-00230, грантом РНФ 17-71-20055, грантом РФФИ 19-11-90076\19, грантом РФФИ 17-01-00732 A, грантом РФФИ 15-31-20856.

Содержание работы

Во введении обосновывается актуальность разрабатываемых в диссертационной работе вычислительных алгоритмов, формулируется цель и задачи исследования, кратко описывается содержание диссертации по главам.

Первая глава посвящена многомасштабным методам для решения задач течения и переноса в перфорированных средах: смешанный обобщенный многомасштабный метод конечных элементов (*Раздел 1*) и обобщенный многомасштабный метод конечных элементов разрывного Галеркина (*Раздел 2*).

Pаздел 1. Течение жидкости в перфорированной пористой среде Ω описывается законом Дарси и уравнением неразрывности

$$k^{-1}u + \nabla p = 0, \quad x \in \Omega$$

$$\nabla \cdot u = 0, \quad x \in \Omega,$$
(1)

где $k=\frac{\kappa}{\mu}$, μ – вязкость, κ – проницаемость пористой среды. Рассматривается задача течения с однородным граничным условием Дирихле на глобальной границе и устанавливается нулевая скорость на перфорациях.

Уравнение переноса примеси описывается уравнением конвекции-диффузии для концентрации

$$\frac{\partial c}{\partial t} + u\nabla c - \nabla \cdot (D\nabla c) = f, \quad x \in \Omega, \tag{2}$$

где D – коэффициент диффузии, f – источник и u – поле скоростей. Рассматривается уравнение переноса с однородными граничными условиями Неймана и начальным условием $c(x,0)=c_0$ в Ω для t=0.

Для численного решения на мелкой сетке используется метод конечных элементов. Слабую формулировку задачи течения можно записать следующим образом: найти $(u,p) \in V \times Q$ такое что

$$a(u,v) + b(p,v) = 0 \quad \forall v \in V,$$

$$b(u,q) = 0 \quad \forall q \in Q,$$
(3)

где

$$a(u,v) = -\int_{\Omega} k^{-1}u \cdot v \ dx, \quad b(u,p) = \int_{\Omega} p \nabla \cdot u \ dx.$$

Использовано пространство Равиар-Томаса для скорости и кусочно-постоянный элемент для давления в мелкомасштабной системе.

Для определения слабой формулировки уравнения переноса аналогично используется метод конечных элементов. У нас есть следующая слабая формулировка уравнения переноса: найти $c \in W$ такое что

$$\frac{1}{\tau}m(c-\check{c},r) + s(c,r) + d(c,r) = (f,r) \quad \forall r \in W,$$
(4)

где $W=L^2(\Omega)$ и

$$m(c,r) = \int_{\Omega} c \, r \, dx, \quad s(c,r) = \int_{\Omega} u \cdot c \, r \, dx, \quad d(c,r) = \int_{\Omega} \nabla c \cdot \nabla r \, dx.$$

Здесь для дискретизации по времени используем неявную схему, и \check{c} – концентрация на предыдущем временном слое и τ временной слой.

Алгоритм многомасштабного метода

Строим многомасштабное пространство для скорости $u_c \in V_{ms}$

$$V_{ms} := \operatorname{span}\{\psi_1, ..., \psi_{N_c}\},\$$

где ψ_i – многомасштабные базисные функции, которые поддерживаются в локальной области, ω^ϵ ($i=1,..,N_c$), и N_c – это количество базисных функций. Для давления используем пространство кусочно-постоянных функций Q_{ms} . Для построения пространства снэпшот решаем локальную задачу в области ω^ϵ : найти $(\phi_j,\eta)\in V_h^{\omega^\epsilon} imes Q_h^{\omega^\epsilon}$ такую что

$$\int_{\omega^{\epsilon}} k^{-1} \phi_{j} v \, dx - \int_{\omega^{\epsilon}} \eta \, \nabla \cdot v \, dx = 0, \quad v \in V_{h}^{\omega^{\epsilon}},
\int_{\omega^{\epsilon}} r \, \nabla \cdot \phi_{j} \, dx = \int_{\omega^{\epsilon}} c \, r \, dx, \quad r \in Q_{h}^{\omega^{\epsilon}}.$$
(5)

Для граничных условий установим

$$\phi_j \cdot n = 0, \quad x \in \partial \omega^{\epsilon},$$

$$\phi_i \cdot n = 0, \quad x \in \partial \mathcal{B}_{\epsilon},$$

где n – вектор единичной внешней нормали на $\partial \omega^{\epsilon}$.

По грубому ребру E, ставим дополнительное граничное условие

$$\phi_j \cdot n = \delta_j,$$

где $j=[1,J_{\omega^\epsilon}]$ и количество локальных задач равна $2\cdot J_{\omega^\epsilon}$. Здесь J_{ω^ϵ} – количество тонких ребер сетки e_j на $E,\,E=\cup_{j=1}^{J_{\omega^\epsilon}}e_j,\,\delta_j$ – кусочно-постоянная функция, определенная на E, которая имеет значение 1 на e_j и значение 0 на других ребрах мелкой сетки. Далее выполняем понижение пространства в пространстве снэпшот с помощью локальной спектральной задачи.

$$\bar{A}_{\omega^{\epsilon}}\bar{\psi}_{k}^{\omega^{\epsilon}} = \lambda_{k}\bar{S}_{\omega^{\epsilon}}\bar{\psi}_{k}^{\omega^{\epsilon}},\tag{6}$$

где

$$\bar{A}_{\omega^{\epsilon}} = R_{\omega^{\epsilon}} A_{\omega^{\epsilon}} R_{\omega^{\epsilon}}^{T}, \quad \bar{S}_{\omega^{\epsilon}} = R_{\omega^{\epsilon}} S_{\omega^{\epsilon}} R_{\omega^{\epsilon}}^{T},$$

$$R_{\omega^{\epsilon}} = [\phi_{1}, \dots, \phi_{J_{\omega^{\epsilon}}},]$$

И

$$A_{\omega^{\epsilon}} = [a_{mn}^{\omega^{\epsilon}}], \quad a_{mn}^{\omega^{\epsilon}} = a_{\omega^{\epsilon}}(\phi_{m}, \phi_{n}) = \int_{E} k^{-1}(\phi_{m} \cdot n)(\phi_{n} \cdot n)ds,$$

$$S_{\omega^{\epsilon}} = [m_{mn}^{\omega^{\epsilon}}], \quad s_{mn}^{\omega^{\epsilon}} = s_{\omega^{\epsilon}}(\phi_{m}, \phi_{n}) = \int_{\omega^{\epsilon}} k^{-1}\phi_{m} \, \phi_{n} \, dx + \int_{\omega^{\epsilon}} \nabla \cdot \phi_{m} \, \nabla \cdot \phi_{n} \, dx.$$

Собственные значения располагаем в порядке возрастания, и выберем первые M_{ω^ϵ} собственные значения и возьмем соответствующие собственные векторы $\psi_k^{\omega^\epsilon} = R_{\omega^\epsilon} \bar{\psi}_k^{\omega^\epsilon}$ в качестве базисных функций, $k=1,2,...,M_{\omega^\epsilon}$.

Затем определяем матрицу проекции

$$R = \begin{bmatrix} R_u & 0 \\ 0 & R_p \end{bmatrix}, \quad R_u = [R_{u,1}, \dots, R_{u,N_E}]^T, \tag{7}$$

где $R_{u,i} = \left[\psi_1^{\omega_i^\epsilon}, \dots, \psi_{M_{\omega_i^\epsilon}}^{\omega_i^\epsilon} \right]^T$ и R_p — матрица проекции для давления, содержащая константу в грубой ячейке для каждой строки. Здесь N_E — количество ребер грубой сетки и $M_{\omega_i^\epsilon}$ — количество локальных многомасштабных базисных функций. Используя построенное многомасштабное пространство, получим следующую систему грубого масштаба в матричной форме

$$\begin{pmatrix} A_c & B_c^T \\ B_c & 0 \end{pmatrix} \begin{pmatrix} u_c \\ p_c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{8}$$

где

$$A_c = R_u A R_u^T, \quad B_c = R_u B R_p^T.$$

Используя грубомасштабное решение u_c , можем восстановить решение на мелкой сетке $u_{ms}=R_u^Tu_c$ и использовать u_{ms} для решения задачи переноса.

Pаздел 2. Рассмотрено нестационарное уравнение конвекции-диффузии (2), описывающее перенос примеси в перфорированных средах Ω . Дополняется уравнение переноса начальным условием c(x,0)=1 в Ω для t=0 и следующими граничными условиями

$$c = c_1, \quad x \in \Gamma_1, \quad -\lambda \frac{\partial c}{\partial n} = 0, \quad x \in \Gamma_2 \cup \Gamma_3 \cup \Gamma_4.$$

Для описания течения в перфорированной области будем использовать уравнения Стокса

$$-\mu \Delta u + \operatorname{grad} p = 0, \quad x \in \Omega,$$

$$\operatorname{div} u = 0, \quad x \in \Omega.$$
 (9)

Система уравнений (9) дополняется соответствующими граничными условиями для скорости течения

$$u = g(x), \quad x \in \Gamma_1, \quad -\lambda \frac{\partial u}{\partial n} = 0, \quad x \in \Gamma_2 \quad u = 0, \quad x \in \Gamma_3 \cup \Gamma_4.$$
 (10)

Для того чтобы определить слабую формулировку переноса, мы используем метод конечных элементов. Для аппроксимации задачи течения мы используем разрывный метод Галеркина (IPDG).

Для системы уравнений течения (9) запишем вариационную формулировку: найти $(u,p)\in V^h\times Q^h$ такую, что

$$a_{DG}(u,v) + b_{DG}(p,v) = 0, \quad \forall v \in V^h,$$

$$b_{DG}(u,q) = 0, \quad \forall r \in Q^h,$$
(11)

где

$$a_{DG}(u,v) = \sum_{K \in \mathcal{T}^h} \int_K (\mu \nabla u \cdot \nabla v) dx$$
$$- \sum_{E \in \Gamma_h} \int_E \left([\mu u \cdot n] \{v\} - \{\mu v \cdot n\} [u] - \{\mu\} \frac{\gamma_u}{h} [u] [v] \right) ds,$$
$$b_{DG}(u,p) = \sum_{K \in \mathcal{T}^h} \int_K p \nabla u dx + \sum_{E \in \Gamma_h} \int_E \{p\} [u \cdot n] ds,$$

где γ_u штрафной параметр и n единичный вектор нормали к ребру E.

Алгоритм многомасштабного метода

Построим многомасштабное пространство для скорости

$$V^{H} = \operatorname{span}\{\psi_{i}\}_{i=1}^{N_{u}}, \quad Q^{H} = \{r \in L^{2}(\Omega) : r|_{K} \in P^{0}(K), \forall K \in \mathcal{T}_{H}\}$$

Для давления мы используем пространство кусочно-постоянных функций над грубой триангуляцией, $N_u=\dim(V^H)$ – количество базисных функций, а $N_p=\dim(Q^H)$ равно числу грубых ячеек сетки.

Локальное снэпшот пространство состоит из функций, которые являются решениями $\phi_l^i \in V^h(K_i)$

$$a_{\mathrm{DG}}(\phi_l^i, v) + b_{\mathrm{DG}}(\eta, v) = 0 \quad \forall v \in V^h(K_i),$$

$$b(\phi_l^i, q) = \int_{K_i} c \, q \, dx, \quad \forall q \in Q^h(K_i),$$
(12)

с $\phi_l^i = \delta_i^l$ на ∂K_i $(l=1,\ldots,J_i)$, где J_i число мелких узлов сетки на границе K_i , и δ_i^l – дискретная дельта-функция, определенная в ∂K_i . Здесь c выбирается из условия совместимости, $c = \frac{1}{|K_i|} \int_{\partial K_i} \delta_i^l \cdot n \, ds$. Далее формируем локальное снэпшот пространство в K_i , используя все локальные решения, т.е. $V^{i,\text{snap}} = \{\phi_l^i : 1 \leq l \leq J_i\}$, и определяем матрицу проекции для снэпшот пространства $R_{i,\text{snap}} = \left[\phi_1^i, \ldots, \phi_{J_i}^i\right]$.

Для того чтобы уменьшить размер снэпшот пространства, решается следующая локальная спектральная задача

$$A^{i,\operatorname{snap}}\psi_k^{i,\operatorname{snap}} = \lambda_k S^{i,\operatorname{snap}}\psi_k^{i,\operatorname{snap}},\tag{13}$$

где $A^{i,\text{snap}} = R_{i,\text{snap}} A^i R_{i,\text{snap}}^T$, $S^{i,\text{snap}} = R_{i,\text{snap}} S^i R_{i,\text{snap}}^T$. Здесь A^i и S^i матричные представления билинейной формы $a_i(u,v)$ и $s_i(u,v)$

$$a_i(u, v) = \int_{K_i} \mu \, \nabla u \cdot \nabla v \, dx, \quad s_i(u, v) = \int_{\partial K_i} u \cdot v \, dx.$$

Расставляем собственные значения в порядке возрастания и выбираем первые собственные векторы, соответствующие первым M_i наименьшим собственным значениям $\psi_k^i = R_{i, \text{snap}} \psi_k^{i, \text{snap}}$ как базисные функции $(k=1,...,M_i)$

$$V^{H} = \text{span}\{\psi_{k}^{i}: 1 \leq i \leq N_{e}, 1 \leq k \leq M_{i}\},\$$

Это многомасштабное пространство будет использоваться в качестве аппроксимационного пространства для скорости.

Во второй главе представлен многомасштабный метод разрывного Галер-кина для задач в перфорированных областях с неоднородными граничными условиями на перфорациях.

Рассматриваем эллиптическое уравнение в перфорированной области

$$\mathcal{L}(u) = f, \quad x \in \Omega, \tag{14}$$

со следующими граничными условиями

$$u = g_g, \quad x \in \Gamma_g, \quad \mathcal{B}(u) = \alpha u + g_p, \quad x \in \Gamma_p,$$
 (15)

где f – источник, $\mathcal L$ обозначает линейный дифференциальный оператор, $\mathcal B$ является оператором производной по нормали и $\partial\Omega=\Gamma_g\cup\Gamma_p.$

• Для оператора Лапласа имеем

$$\mathcal{L}(u) = \nabla \cdot q(u), \quad \mathcal{B}(u) = q \cdot n,$$
 (16)

где $q(u)=-k\nabla u$ – поток, k – коэффициент диффузии и n – внешняя единичная нормаль на $\partial\Omega.$

• Для оператора упругости имеем

$$\mathcal{L}(u) = \nabla \cdot \sigma(u), \quad \mathcal{B}(u) = \sigma \cdot n,$$
 (17)

где

$$\sigma(u) = 2\mu\varepsilon(u) + \lambda\nabla\cdot u\,\mathcal{I}, \quad \varepsilon(u) = \frac{1}{2}(\nabla u + \nabla u^{Tr}).$$

Здесь u - вектор перемещения, $\varepsilon(u)$ - тензор деформации, $\sigma(u)$ - тензор напряжения, u^{Tr} - транспонирование вектора u, λ и μ - коэффициенты Ламé.

Для аппроксимации на мелкой сетке используется метод разрывного Галеркина (IPDG).

Аппроксимация на грубой сетке

Для аппроксимации грубой сетки используем DG-подход и рассматриваем два типа базисных функций, привязанных к двум границам: (1) внешние границы Γ_g^i и (2) граница перфорации Γ_p^i .

Mногомасштабные базисные функции внешних границ. В локальном снэпшот пространстве, состоящем из функций u_l^i , которые являются решениями следующей локальной задачи

$$\mathcal{L}(u_l^i) = 0, \quad x \in K_i \tag{18}$$

с краевыми условиями на внешних границах

$$u_l^i = g_i^l, \quad x \in \Gamma_g^i,$$

на границах перфорации ставим однородное граничное условие

$$\mathcal{B}(u_l^i) = \alpha u_l^i, \quad x \in \Gamma_p^i.$$

где $l=1,\ldots,L_i^g$. Для оператора Лапласа у нас есть локальные задачи $L_i^g=J_i^g$, где J_i^g - количество граней мелкой сетки на Γ_g^i , а $g_i^l=\delta_i^l$ это дельта-функция Кронекера, которая равна 1, если i=l, и равна 0 в противном случае. Для оператора упругости у нас есть локальные задачи $L_i^g=d\cdot J_i^g$, где d — размерность, а $g_i^l=(\delta_i^l,0)$ и $(0,\delta_i^l)$ для d=2.

Для того чтобы уменьшить размер снэпшот пространства, мы решаем следующую локальную спектральную задачу в снэпшот пространстве $V_g^{i, \mathrm{snap}}$

$$\tilde{A}_{a}^{K_{i}}\tilde{\psi}_{a}^{i} = \lambda_{o}\tilde{S}_{a}^{K_{i}}\tilde{\psi}_{a}^{i},\tag{19}$$

где

$$\tilde{A}_q^{K_i} = R_q^{i,\operatorname{snap}} A_h^{K_i} (R_q^{i,\operatorname{snap}})^T, \quad \tilde{S}_q^{K_i} = R_q^{i,\operatorname{snap}} S_h^{K_i} (R_q^{i,\operatorname{snap}})^T.$$

Затем мы располагаем собственные значения в порядке возрастания и выбираем первые собственные векторы, соответствующие первым наименьшим собственным значениям $\psi^i_{g,k}=(R^{i,\mathrm{snap}}_g)^T \tilde{\psi}^i_{g,k}$ в качестве базисных функций $(k=1,...,M^i_g)$

$$V_H^g = \operatorname{span}\{\psi_{g,k}^i: \ 1 \leq i \leq N_{cell}^H, \ 1 \leq k \leq M_g^i\}.$$

Mногомасштабные базисные функции границ перфораций. Для учета неоднородных граничных условий на границах перфорации мы строим дополнительные многомасштабные базисные функции. Снэпшот пространство создается путем решения следующей задачи в локальной области K^i , содержащей перфорации,

$$\mathcal{L}(u_l^i) = 0, \quad x \in K_i \tag{20}$$

со следующими краевыми условиями на внешних границах

$$u_l^i = 0, \quad x \in \Gamma_q^i,$$

на границах перфорации, задаём граничное условие

$$\mathcal{B}(u_l^i) = \alpha u_l^i + g_l^i, \quad x \in \Gamma_p^i,$$

где $l=1,\ldots,L_i^p,\ L_i^p=J_i^p$ для задачи Лапласа и $L_i^p=dJ_i^p$ для задачи упругости $(J_i^p$ количество граней мелкой сетки на $\Gamma_p^i)$.

Выполняем понижение размерности в снэпшот пространстве, используя ло-кальную спектральную задачу

$$\tilde{A}_p^{K_i} \tilde{\psi}_{g,k}^i = \eta \tilde{S}_p^{K_i} \tilde{\psi}_{g,k}^i, \tag{21}$$

где

$$\tilde{A}_p^{K_i} = R_p^{i,\operatorname{snap}} A_h^{K_i} (R_p^{i,\operatorname{snap}})^{Tr}, \quad \tilde{S}_p^{K_i} = R_p^{i,\operatorname{snap}} S_h^{K_i} (R_p^{i,\operatorname{snap}})^{Tr}.$$

Собственные значения расположены в порядке возрастания, и, выбирая первые собственные векторы, соответствующие первым наименьшим собственным значениям, определяем базисные функции разномасштабной границы перфорации

$$V_{H}^{p} = \text{span}\{\psi_{g,k}^{i}: 1 \leq i \leq N_{cell,p}^{H}, 2 \leq k \leq M_{p}^{i}\},$$

где $\psi^i_{g,k}=(R^{i,\mathrm{snap}}_p)^{Tr} \tilde{\psi}^i_{g,k}$ для $k=1,...,M^i_p,~N_{cell,p}$ – количество локальных областей с перфорацией.

Система грубого масштаба

Для построения системы грубой сетки, генерируем матрицу проекции с использованием многомасштабных базисных функций.

$$R = \left[\psi_{g,1}^{1}, \dots, \psi_{g,M_g^{N_g}}^{N_g}, \psi_{p,1}^{1}, \dots, \psi_{p,M_p^{N_p}}^{N_p}, \phi_1, \dots, \phi_{N_{cell}^H}\right]^{Tr}$$

Используя матрицу проекции, получим следующую систему грубой сетки в матричной форме:

$$A_H U_H = F_H, (22)$$

где

$$A_H = RA_h R^{Tr}, \quad F_H = RF_h.$$

После расчета решения грубого масштаба мы можем восстановить мелкомасштабное решение $U_{ms}=R^{Tr}U_{H}.$

На рисунке 1 представлены результаты эталонных и многомасштабных решений для задачи переноса с неоднородными граничными условиями на перфорациях.

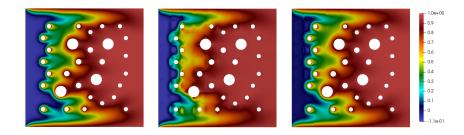


Рис. 1. Распределение концентрации в конечный момент времени. Слева: Эталонное решение. Центр: Многомасштабное решение без базисных функций для перфораций. Справа: Многомасштабное решение с использованием базисных функций для перфораций.

В **третьей главе** представлен многомасштабный метод для задач течения и переноса в тонких областях. Мы будем рассматривать задачу переноса (2), которое описывается уравнением конвекции-диффузии в тонкой области Ω . Для описания течений в тонкой области будем использовать систему уравнений Стокса

$$\rho \frac{\partial u}{\partial t} - \mu \Delta u + \nabla p = 0, \quad x \in \Omega, \quad t > 0,$$

$$\nabla \cdot u = 0, \quad x \in \Omega.$$
(23)

Уравнения (2) и (23) имеют следующие начальные условия

$$c = c_0, \quad u = u_0, \quad x \in \Omega, \quad t = 0.$$

Более того, рассматриваются следующие граничные условия для задачи тече-

ния (23)

$$u = g, \quad x \in \Gamma_{in},$$
$$(\nabla u - p\mathcal{I}) \cdot n = 0, \quad x \in \Gamma_{out},$$
$$u = 0, \quad x \in \Gamma_{w},$$

где n – единичный вектор внешней нормали на $\partial\Omega$, \mathcal{I} – единичная матрица, Γ_{in} – граница входа потока, Γ_{out} – граница выхода потока, Γ_{w} – реактивная граница тонкой области, $\Gamma_{w} \cup \Gamma_{in} \cup \Gamma_{out} = \partial\Omega$.

Для задачи переноса имеем следующие входные и выходные граничные условия

$$c = c_{in}, \quad x \in \Gamma_{in},$$

 $-D\nabla c \cdot n = 0, \quad x \in \Gamma_{out},$

и задаем смешанный тип граничного условия

$$-\beta D\nabla c \cdot n = \alpha(c - c_w) + \zeta g \quad x \in \Gamma_w,$$

где получаем граничные условия Дирихле для $\beta=\zeta=0,\ \alpha=1,$ граничные условия Неймана для $\beta=\zeta=1,\ \alpha=0,$ и граничные условия Робина для $\beta=1,$ $\zeta=0.$

Для того чтобы решить задачу, мы генерируем мелкую сетку и воспользуемся методом конечных элементов для аппроксимации по пространству.

Аппроксимация на грубой сетке

Для построения аппроксимации на грубой сетке мы используем DG-GMsFEM. Рассмотрены два типа многомасштабных пространств для течения:

- *Tun 1*. Многомасштабное пространство для течения определяется таким образом, чтобы снэпшот пространства и спектральные задачи строились отдельно для каждого направления потока.
- *Tun 2.* Многомасштабное пространство для течения определяется таким образом, чтобы снэпшот пространства и спектральные задачи были построены для всего вектора скорости.

Для концентрации рассмотрены также два типа многомасштабных пространств:

- *Tun 1*. Многомасштабное пространство, для которого граница локальной области и реактивная граница обрабатываются отдельно. Снэпшот пространства строятся отдельно с соответствующими спектральными задачами для каждой из них.
- *Tun 2.* Многомасштабное пространство, для которого граничное условие Дирихле применяется на всей границе, с соответствующими спектральными задачами для выделения доминантной моды.

Мы будем рассматривать два типа границ: (1) интерфейс между локальными областями Γ_E и (2) реактивные границы стенок Γ_w .

Для построения системы грубой сетки, строим матрицы проекции, используя вычисленные многомасштабные базисные функции для скорости и концентрации

$$R_u = [\psi_1, \dots, \psi_{N_u}]^T, \quad R_p = [\eta_1, \dots, \eta_{N_p}]^T, \quad R_c = [\phi_1, \dots, \phi_{N_c}]^T.$$

Используя эти матрицы, получаем следующие вычислительные системы в матричной форме:

• Задача течения:

$$\frac{1}{\tau} \begin{pmatrix} M_H^u & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_H - \check{u}_H \\ p_H - \check{p}_H \end{pmatrix} + \begin{pmatrix} A_H^u & B_H^T \\ B_H & 0 \end{pmatrix} \begin{pmatrix} u_H \\ p_H \end{pmatrix} = \begin{pmatrix} F_H^u \\ F_H^p \end{pmatrix}, \tag{24}$$

где

$$M_H^u = R_u M_h^u R_u^T$$
, $A_H^u = R_u A_h^u R_u^T$, $B_H = R_u B_h R_p^T$, $F_H^u = R_u F_h^u$, $F_H^u = R_p F_h^p$,

а после решения аппроксимации грубого масштаба восстанавливаем скорость на мелкой сетке $u_{ms} = R_u^T u_H$.

• Задача переноса:

$$\frac{1}{\tau}M_H^c(c_H - \check{c}_H) + (A_H^c + C_H^c(u_{ms}))c_H = F_H^c, \tag{25}$$

где

$$M_H^c = R_c M_h^c R_c^T, \quad A_H^c = R_c A_h^c R_c^T, \quad C_H^c(u_{ms}) = R_c C_h^c(u_{ms}) R_c^T, \quad F_H^c = R_c F_h^c$$

и восстанавливаем концентрацию на мелкой сетке $c_{ms}=R_c^Tc_H$. На рисунке 2 представлено решение задачи в трёхмерной области.

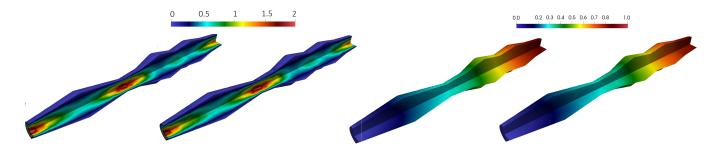


Рис. 2. Эталонные и многомасштабные решения скорости (а) и концентрации (b) в конечный момент времени. Слева: Эталонное решение. Справа: Многомасштабное решение с 20 многомасштабными базисными функциями Типа 1.

В **четвертой главе** рассматривается упрощенная задача МГД в перфорированных областях и предложен многомасштабный метод его решения на грубой сетке.

Рассматривается магнитное поле B=(0,0,B) перпендикулярное полю скорости $u=(u_1,u_2,0)$ в двумерной перфорированной области Ω , таким образом упрощенные уравнения МГД без подъёмной силы и гидродинамического конвективного члена описываются следующим образом:

$$\nabla \cdot (uB) - \nabla \cdot (R_{e_m}^{-1} \nabla B) = 0, \quad x \in \Omega,$$

$$-R_e^{-1} \Delta u + \nabla p - S_c B \nabla B = 0, \quad x \in \Omega,$$

$$\nabla \cdot u = 0, \quad x \in \Omega,$$
(26)

где R_e — гидродинамическое число Рейнольдса, R_{e_m} — магнитное число Рейнольдса, S_c — параметр взаимодействия.

Пусть $D=R_{e_m}^{-1},\ q=-D\nabla B$ является потоком и Ω является перфорированной областью. Запишем уравнения (26) в смешанной форме и используем итерации Пикара

• Найти (q^{k+1}, B^{n+1}) из

$$D^{-1}q^{k+1} + \nabla B^{k+1} = 0,$$

$$\nabla q^{k+1} + \nabla (u^k B^{k+1}) = 0.$$
 (27)

• Найти (u^{k+1}, p^{n+1}) из

$$-R_e^{-1}\Delta u^{k+1} + \nabla S_c p^{k+1} + S_c D^{-1} B^{k+1} q^{k+1} = 0,$$

$$\nabla u^{k+1} = 0$$
(28)

и рассмотрим со следующими граничными условиями

$$u = 0, \quad x \in \Gamma_P, \quad (\nabla u - p\mathcal{I}) \cdot n = 0, \quad x \in \partial \Omega / \Gamma_P,$$

$$B = 0, \quad x \in \Gamma_P, \quad B = g, \quad x \in \Gamma_1, \quad q \cdot n = 0, \quad x \in \Gamma_2,$$

где k – нелинейная итерация, Γ_P – граница перфорации, $\Gamma_1 \cup \Gamma_2 \cup \Gamma_P = \partial \Omega, \, n$ – единичный вектор внешней нормали на $\partial \Omega$ и $\mathcal I$ представляет собой единичную матрицу $n \times n$.

Задача магнитного поля решается на мелкой сетке с использованием элемента Равиар-Томаса низшего порядка. Для аппроксимации задачи течения на мелкой сетке используется разрывный метод Галеркина. Для аппроксимации задачи магнитного поля на грубой сетке мы используем смешанный GMsFEM, а для задачи течения DG-GMsFEM.

На рисунке 3, мы представляем результаты предлагаемого метода многомасштабного анализа для $M\Gamma Д$.

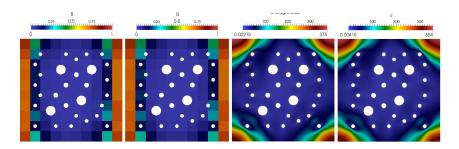


Рис. 3. Распределение магнитного поля (сверху) и поля скорости (снизу). Слева: Эталонное решение (мелкая сетка). Справа: Многомасштабное решение.

Наконец, в **пятой главе** рассматривается численная реализация процессов тепломассопереноса в неоднородных средах.

Рассматривается задача течения и теплообмена в неоднородной области $\Omega = \Omega_1 + \Omega_2$. Уравнение течения описывается моделью Бринкмана

$$\mu \Delta u - \nabla p + Au = 0, \quad x \in \Omega,$$

$$\nabla \cdot u = 0, \quad x \in \Omega$$
(29)

со следующими граничными условиями

$$u = g, \quad x \in \Gamma_L, \quad (\mu \nabla u - p\mathcal{I}) \cdot n = 0, \quad x \in \Gamma_R, \quad u = 0, \quad x \in \Gamma_T \cup \Gamma_B,$$

где μ – вязкость, p – давление, $A=k^{-1}$. Здесь проницаемость k в области препятствий Ω_2 определяется с использованием уравнения Кармана-Козени

$$A = \begin{cases} 0, & x \in \Omega_1, \\ -C\frac{(1-\epsilon)^2}{\epsilon^3 + b}, & x \in \Omega_2, \end{cases}$$

где C – постоянная, учитывающая морфологию мягких областей, ϵ – пористость, b – постоянная, введенная во избежание деления на ноль.

Уравнение теплообмена описывается уравнением конвекции-диффузии с заданным полем скоростей \boldsymbol{u}

$$\alpha \left(\frac{\partial T}{\partial t} + u \cdot \operatorname{grad} T \right) - \operatorname{div} \cdot (\lambda \operatorname{grad} T) = 0, \quad x \in \Omega$$
 (30)

с начальным условием $T=T_0$ и граничными условиями

$$T = T_1, \quad x \in \Gamma_L, \quad -\lambda \frac{\partial T}{\partial n} = 0, \quad x \in \Gamma_R \cup \Gamma_T \cup \Gamma_B,$$

где $\partial\Omega = \Gamma_L \cup \Gamma_R \cup \Gamma_T \cup \Gamma_B$.

Для коэффициентов уравнения имеем следующие соотношения

$$\alpha = \begin{cases} \rho_w c_w, & x \in \Omega_1, \\ \rho_{sc} c_{sc}, & x \in \Omega_2, \end{cases} \quad \lambda = \begin{cases} \lambda_w, & x \in \Omega_1, \\ \lambda_{sc}, & x \in \Omega_2, \end{cases}$$

где ρ_w , c_w , λ_w и ρ_{sc} , c_{sc} , λ_{sc} – плотность, удельная теплоемкость и теплопроводность воды и гранул соответственно.

Для аппроксимации задачи на мелкой сетке используем разрывный метод Галеркина (IPDG) как для уравнений теплообмена, так и для уравнений течения. Для аппроксимации грубой сетки, используем обобщенный метод конечных элементов разрывного Галеркина для задачи течения.

Результаты расчетов показаны на рисунке 4.

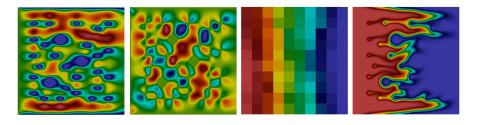


Рис. 4. Распределение скорости (u_x и u_y), давления и температуры (слева направо).

Основные результаты работы. Диссертационная работа посвящена разработке и численной реализации многомасштабных математических моделей процессов течения и переноса в неоднородных, тонких и перфорированных средах. В диссертационной работе получены следующие основные результаты:

1. Разработан и численно реализован вычислительный алгоритм обобщенного многомасштабного метода разрывного Галеркина, пригодный для решения задач в перфорированных областях с неоднородными граничными условиями на перфорациях. Численные результаты представлены для

- различных концепций построения грубой сетки. Предлагаемый многомасштабный метод для перфорированных областей дает хорошие результаты и существенное уменьшение размера дискретной системы.
- 2. Построена математическая модель течения жидкости в пористых средах, основанная на уравнениях Стокса и нестационарного уравнения конвекции-диффузии с неоднородными граничными условиями на стенках. Для ее численной реализации предложен обобщённый многомасштабный метод разрывного Галеркина для решения задач течения и переноса в тонких областях. Представлены численные результаты для трех тестовых геометрий в дву- и трехмерных постановках, демонстрирующих эффективность предложенного метода.
- 3. Рассмотрен и исследован алгоритм смешанного обобщённого многомасштабного метода конечных элементов для упрощенной задачи магнитной гидродинамики в перфорированных средах в смешанной формулировке для магнитного поля. Уменьшение вычислительных ресурсов осуществлено посредством применения для задачи магнитного поля смешанного многомасштабного метода, а для задачи течения был использован многомасштабный метод разрывного Галеркина. Численные результаты представлены для двумерной модельной задачи. Предложенный многомасштабный метод показывает хорошую точность с использованием небольшого количества базисных функций.
- 4. Проведена численная реализация математической модели Бринкмана и процессов тепломассопереноса в неоднородных пористых средах с помощью обобщённого многомасштабного метода разрывного Галеркина. Приведены численные результаты, полученные для двумерной модельной задачи. Из полученных результатов следует, что данный многомасштабный метод показывает высокую точность для данного типа задач.

Публикации автора по теме диссертации

1. Алексеев В. Н., Васильева М. В., Степанов С. П. Итерационные методы решения для задачи течения и переноса в перфорированных областях // Вестник Северо-Восточного федерального университета им. МК Аммосова. – 2016. – №. 5 (55). –С. 67–79.

- 2. Гаврильева У. С., Алексеев В. Н., Васильева М. В. Течение и перенос в перфорированных и трещиноватых областях с неоднородными граничными условиями Робина // Математические заметки СВФУ. 2017. Т. 24. №. 3. –С. 65–77.
- 3. Алексеев, В. Н., Васильева, М. В., Прокопьев, Г. А., Тырылгин, А. А. Модели термоупругости для пористых материалов с учетом наличия трещин // Математические заметки СВФУ. 2017. Т. 24. №. 3. –С. 19–37.
- 4. Alekseev V., Tyrylgin A., Vasilyeva M. Generalized Multiscale Finite Element Method for Elasticity Problem in Fractured Media / International Conference on Finite Difference Methods. Springer, Cham, 2018. C. 137–144.
- 5. Alekseev V., Gavrileva U., Spiridonov D., Tyrylgin A., Vasilyeva M. Numerical simulation of the transport and flow problems in perforated domains using generalized multiscale finite element method / AIP Conference Proceedings. AIP Publishing, 2018. T. 2025. № 1. C. 100001.
- 6. Tyrylgin, A., Vasilyeva, M., Zhang, Q., Spiridonov, D., Alekseev, V. Mathematical modeling of the fluid flow and geo-mechanics in the fractured porous media using generalized multiscale finite element method / AIP Conference Proceedings. AIP Publishing, 2018. T. 2025. № 1. C. 100009.
- 7. Alekseev, V. N., Vasilyeva, M. V., Vasilyev, V. I., Sidnyaev N.I. Numerical simulation of natural convection in a freezing soil // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2019. T. 161. №. 3. C. 327–340.
- 8. Alekseev V., Vasilyeva M., Vasiliev V. Multiscale simulation of the heat and mass transfer with Brinkman model / Journal of Physics: Conference Series. IOP Publishing, 2019. T. 1392. №. 1. C. 012063.
- 9. Vasilyeva, M., Chung, E. T., Leung, W. T., Alekseev, V. Nonlocal multicontinuum (NLMC) upscaling of mixed dimensional coupled flow problem for embedded and discrete fracture models // GEM-International Journal on Geomathematics. 2019. T. 10. №. 1.

- C. 1-23.
- 10. Vasilyeva, M., Babaei, M., Chung, E. T., Alekseev, V. Upscaling of the single-phase flow and heat transport in fractured geothermal reservoirs using nonlocal multicontinuum method // Computational Geosciences. 2019. T. 23. №. 4. C. 745–759.
- 11. Алексеев, В. Н., Тырылгин, А. А., Васильева, М. В., Васильев, В. И. Численное усреднение для задач теплопереноса в условиях криолитозоны // Математические заметки СВФУ. 2020. Т. 27. №. 2. С. 77–92.
- 12. Alekseev, V., Tang, Q., Vasilyeva, M., Chung, E. T., Efendiev, Y. Mixed Generalized Multiscale Finite Element Method for a Simplified Magnetohydrodynamics Problem in Perforated Domains // Computation. 2020. T. 8. №. 2. C. 58.
- 13. Vasilyeva, M., Alekseev, V., Chung, E. T., Efendiev, Y. Multiscale dimension reduction for flow and transport problems in thin domain with reactive boundaries // Journal of Computational Physics. 2021. C. 110512.
- 14. Alekseev, V., Vasilyeva, M., Kalachikova, U., Chung, E. T. DG-GMsFEM for Problems in Perforated Domains with Non-Homogeneous Boundary Conditions // Computation. 2021. T. 9. №. 7. C. 75.
- 15. Свидетельство о государственной регистрации программы для ЭВМ «Вычислительная библиотека для численного моделирования задач в трещиноватых областях с использованием обобщенного многомасштабного разрывного метода Галеркина» (Васильева М.В., Гаврильева У.С., Алексеев В.Н.). № 2018663107 от 07.11.2018 г.
- 16. Свидетельство о государственной регистрации программы для ЭВМ «Вычислительная библиотека для численного моделирования задачи течения в перфорированных и неоднородных областях с использованием обобщенного многомасштабного разрывного метода Галеркина» (Васильева М.В., Алексеев В.Н.). № 2019667386 от 07.12.2019 г.