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We study nonlocal boundary value problems with the Samarkii and integral conditions

for pseudoparabolic equations ut − a(x, t)uxx + c(x, t)u − uxxt = f(x, t). The existence

and uniqueness of a regular solution are established. Bibliography: 9 titles.

Introduction

We study spatial-nonlocal boundary value problems for one-dimensional linear pseudoparabolic

equations with the boundary condition combined from the nonlocal Samarskii boundary condi-

tion with variable coefficients and integral type boundary conditions. Such nonlocal problems

for pseudoparabolic equations were earlier studied only in special cases (cf. [1, 2]). The method

consists of 1) the passage from a problem for a “good” equation with “bad” boundary condi-

tions to a problem with “good” boundary conditions, but for a “bad” equation,” the so-called

loaded equation [3, 4], 2) the proof of the solvability of the obtained problem by the parameter

continuation method and a priori estimates, and 3) the construction of a solution to the original

problem. Similar methods have been effectively used in close situations [5, 6].

1 Statement of the Problems

Suppose that Ω is the interval (0, 1) on the Ox-axis, Q is a rectangle Ω×(0, T ), 0 < T < +∞,

a(x, t), c(x, t), K1(x), K2(x), f(x, t), α1(t), α2(t), β1(t), β2(t) are functions of x ∈ Ω, t ∈ [0, T ].
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Problem I. Find a solution u(x, t) to the equation

Lu ≡ ut − a(x, t)uxx + c(x, t)u− uxxt = f(x, t) in Q (1)

satisfying the conditions

u(x, 0) = 0, x ∈ Ω, (2)

ux(0, t) = α1(t)u(0, t) + α2(t)u(1, t) +

1∫

0

K1(x)u(x, t) dx, 0 < t < T, (3)

ux(1, t) = β1(t)u(0, t) + β2(t)u(1, t) +

1∫

0

K2(x)u(x, t) dx, 0 < t < T. (4)

Problem II. Find a solution u(x, t) to Equation (1) in Q satisfying (2) and the conditions

ux(0, t) = α1(t)u(0, t) + α2(t)ux(1, t) +

1∫

0

K1(x)u(x, t) dx, 0 < t < T, (5)

u(1, t) = β1(t)u(0, t) + β2(t)ux(1, t) +

1∫

0

K2(x)u(x, t) dx, 0 < t < T. (6)

Problem III. Find a solution u(x, t) to Equation (1) in Q satisfying (2) and the conditions

u(0, t) = α1(t)ux(0, t) + α2(t)ux(1, t) +

1∫

0

K1(x)u(x, t) dx, 0 < t < T, (7)

u(1, t) = β1(t)ux(0, t) + β2(t)ux(1, t) +

1∫

0

K2(x)u(x, t) dx, 0 < t < T. (8)

Note that the function α1(t)β2(t)−α2(t)β1(t) can vanish (in particular, identically) on [0, T ].

2 Solvability of Problem I

Introduce the space

V = {v(x, t) : v(x, t) ∈ L∞(0, T ;W 2
2 (Ω)), vt(x, t) ∈ L2(0, T ;W

1
2 (Ω)), vxxt(x, t) ∈ L2(Q)}

equipped with the norm

‖v‖V = ‖v‖L∞(0,T ;W 2
2 (Ω)) + ‖vt‖L2(0,T ;W 1

2 (Ω)) + ‖vxxt‖L2(Q).

Suppose that necessary smoothness conditions (specified below) are satisfied. We set

Δ1(t) = α2(t) + β2(t)− 2.
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Assume that

Δ1(t) �= 0, t ∈ [0, T ], (9)

and set

γ0(t) =
1− β2(t)

Δ1(t)
, γ1(t) =

β2(t)− 2

Δ1(t)
,

δ0(t) =
α2(t)− 1

Δ1(t)
, δ1(t) = − α2(t)

Δ1(t)
,

N1(x, t) = γ0(t)K1(x) + δ0(t)K2(x),

N2(x, t) = γ1(t)K1(x) + δ1(t)K2(x),

K(x, y, t) = x2N1(y, t) + xN2(y, t).

We define the operator B by the formula

(Bu)(x, t) = u(x, t)−
∫

Ω

K(x, y, t)u(y, t) dy.

For the sake of convenience, we preserve the notation u(x, t) for the action of the operator B

on a function u(x, t). Since the operator B is a Fredholm integral operator of the second kind

with degenerate kernel, it is easy to write the invertibility conditions (the invertibility of B will

be used below). We set

z1(t) = 1−
∫

Ω

x2N1(x, t) dx, z2(t) = −
∫

Ω

xN1(x, t) dx,

s1(t) = −
∫

Ω

x2N2(x, t) dx, s2(t) = 1−
∫

Ω

xN2(x, t) dx,

Δ11(t) = z1(t)s2(t)− z2(t)s1(t),

K0(x, y, t) =
1

Δ11(t)
{[x2s2(t)− xs1(t)]N1(y, t)− [x2z2(t)− xz1(t)]N2(y, t)}.

In the case

Δ11(t) �= 0, t ∈ [0, T ], (10)

we have the equality

u(x, t) = u(x, t) +

∫

Ω

K0(x, y, t)u(y, t) dy

which defines the inverse operator B−1.

We introduce the function Φ(x, t, u) (u = u(x, t)) by the formula

Φ(x, t, u) =

∫

Ω

Kxx(x, y, t)ut(y, t) dy −
∫

Ω

K(x, y, t)uyyt(y, t) dy −
∫

Ω

a(x, t)K(x, y, t)uyy(y, t) dy

+

∫

Ω

{a(x, t)Kxx(x, y, t)−Kt(x, y, t)+Kxxt(x, y, t)− c(x, t)K(x, y, t)+ c(y, t)K(x, y, t)}u(y, t) dy.
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Denote by g(x, t) the function f(x, t). We consider the boundary value problem: find a solution

v(x, t) to the equation

Lv − Φ(x, t, B−1v) = g(x, t) in Q (11)

satisfying (2) and the conditions

vx(0, t) = α1(t)v(0, t) + α2(t)v(1, t), 0 < t < T, (12)

vx(1, t) = β1(t)v(0, t) + β2(t)v(1, t), 0 < t < T. (13)

Proposition 1. Assume that the conditions (9) and (10) hold. Then if v(x, t) is a solution

in V to the boundary value problem (11), (2), (12), (13), then u = B−1v is a solution in V to

Problem I.

Proof. If v(x, t) belongs to the space V then u(x, t) belongs to the same space. The converse

assertion is also valid. It is obvious that the conditions (2)–(4) are satisfied. We have the equality

B(Lu− f) = 0

from which, together with the condition (10) providing the one-to-one invertibility of the operator

B, it follows that u(x, t) is a solution to Equation (1).

From Proposition 1 it is obvious that for proving the solvability of Problem I in V it suffices

to establish the solvability of the boundary value problem (11), (2), (12), (13) in the same space.

Let λ be a number in [0, 1]. We set

ai(x, t, λ) =
λx2

2
[βi(t)− αi(t)] + λxαi(t), i = 1, 2,

b1(x, t, λ) = a1(x, t, λ) +
a2(x, t, λ)a1(1, t, λ)

1− a2(1, t, λ)
,

b2(x, t, λ) =
a2(x, t, λ)

1− a2(1, t, λ)
,

Ai(x, t, λ) = bixx(x, t, λ)− bi(x, t, λ), i = 1, 2,

Bi(x, t, λ) = bixxt(x, t, λ) + a(x, t)bixx(x, t, λ)− c(x, t)bi(x, t, λ)− bit(x, t, λ), i = 1, 2,

F (x, t, λ, ξ) = A1(x, t, λ)ξ1 +A2(x, t, λ)ξ2 +B1(x, t, λ)ξ3 +B2(x, t, λ)ξ4,

w(t) = (wt(0, t), wt(1, t), w(0, t), w(1, t)).

Theorem 1. Assume that (9) and the following conditions hold:

K1(x) ≡ K2(x) ≡ 0, x ∈ Ω, (14)

a(x, t) ∈ C1(Q), c(x, t) ∈ C1(Q), (15)

αi(t) ∈ C1([0, T ]), βi(t) ∈ C1([0, T ]), i = 1, 2; (16)

c(x, t) � c0 > 0, (x, t) ∈ Q, (17)

[1 + 8α1(t)]ξ
2
1 + 8[α2(t)− β1(t)]ξ1ξ2 + [1− 8β2(t)]ξ

2
2 � 0, t ∈ [0, T ], (ξ1, ξ2) ∈ R

2, (18)

f(x, t) ∈ L2(Q). (19)

Then there exists a unique solution u(x, t) in V to Equation (1) in Q satisfying (2), (12), (13).
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Proof. We consider the auxiliary boundary value problem: find a solution w(x, t) to the

equation

L(λ)w ≡ wt − awxx + cw − wxxt − F (x, t, λ, w) = f (20)

in the rectangle Q that satisfies (2) and

wx(0, t) = wx(1, t) = 0, 0 < t < T. (21)

By the theorem about the parameter continuation method [7], for the solvability of the

problem in the space V for all λ in [0, 1] and any function f(x, t) in L2(Q), it suffices to prove

1) the continuity of the family of operators {L(λ)} with respect to λ,

2) the solvability of the boundary value problem (20) (2), (21) in the space V for λ = 0,

3) an a priori estimate for all possible solutions w(x, t) to the boundary value problem (20),

(2), (21). in the space V , uniformly with respect to λ.

The continuity of {L(λ)} with respect to λ is obvious. It is known [8, 9] that the problem

(20), (2), (21) is solvable in the space V for λ = 0 under the conditions (15), (17), (19). Let us

show that for all possible solutions w(x, t) to the boundary value problem (20), (2), (21) an a

priori estimate, uniform with respect to λ, holds in the space V .

Let w(x, t) be a solution in V to the boundary value problem (20), (2), (21). We set

u(x, t) = w(x, t) + b1(x, t, λ)w(0, t) + b2(x, t, λ)w(1, t).

By the elementary inequalities

t∫

0

v2(0, τ) dτ �
t∫

0

∫

Ω

v2x(x, τ) dx dτ + 2

t∫

0

∫

Ω

v2(x, τ) dx dτ,

t∫

0

v2(1, τ) dτ �
t∫

0

∫

Ω

v2x(x, τ) dx dτ + 2

t∫

0

∫

Ω

v2(x, τ) dx dτ,

(22)

it is easy to show that u(x, t) belongs to the space V . A simple calculation shows that u(x, t) is

a solution to the equation

ut − auxx + cu− uxxt = f (23)

and satisfies (2) and the conditions

ux(0, t) = λ[α1(t)u(0, t) + α2(t)u(1, t)], 0 < t < T, (24)

ux(1, t) = λ[β1(t)u(0, t) + β2(t)u(1, t)], 0 < t < T. (25)

We consider the equality

t∫

0

∫

Ω

(uτ − uxxτ + cu)
[
uτ +

(
x− 1

2

)
uxτ − uxxτ

]
dx dτ

=

t∫

0

∫

Ω

(f + auxx)
[
uτ +

(
x− 1

2

)
uxτ − uxxτ

]
dx dτ, (26)
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which follows from Equation (23). Integrating by parts and using (2), (24), and (25), we obtain

t∫

0

∫

Ω

[
1

2
u2τ + 2u2xτ + u2xxτ

]
dx dτ +

1

2

∫

Ω

c(x, t)[u2(x, t) + u2x(x, t)] dx+
1

4

t∫

0

{u2τ (0, τ) + u2τ (1, τ)

+ 8λ[α1(τ)u
2
τ (0, τ) + [α2(τ)− β1(τ)]uτ (0, τ)uτ (1, τ)− β2(τ)u

2
τ (1, τ)]} dτ

=

t∫

0

1∫

0

(
x− 1

2

)
uxτuxxτdx dτ +

t∫

0

∫

Ω

(f + auxx)
[
uτ +

(
x− 1

2

)
uxτ − uxxτ

]
dx dτ

+
1

2

t∫

0

∫

Ω

cτ [u
2 + u2x] dx dτ −

t∫

0

∫

Ω

(
x− 1

2

)
cuuxτ dx dτ −

t∫

0

∫

Ω

cxuuxτ dx dτ

− 2λ

t∫

0

{uτ (0, τ)[α′
1(τ)u(0, τ) + α′

2(τ)u(1, τ)]− uτ (1, τ)[β
′
1(τ)u(0, τ) + β′2(τ)u(1, τ)]} dτ

+ λ

t∫

0

{c(1, τ)u(1, τ)[β1(τ)uτ (0, τ) + β2(τ)uτ (1, τ) + β′1(τ)u(0, τ) + β′2(τ)u(1, τ)
]

− c(0, τ)u(0, τ)
[
α1(τ)uτ (0, τ) + α2(τ)uτ (1, τ) + α′

1(τ)u(0, τ) + α′
2(τ)u(1, τ)

]} dτ.
Using the conditions (15)–(18), the inequality (22), the Young inequality, and the obvious in-

equality
1∫

0

∫

Ω

u2xx dx dt � T

t∫

0

τ∫

0

∫

Ω

u2xxξ dx dξ dτ, (27)

we obtain the inequality

t∫

0

∫

Ω

(u2τ + u2xτ + u2xxτ ) dx dτ +

∫

Ω

[u2(x, t) + u2x(x, t)] dx

� δ

t∫

0

∫

Ω

(u2τ + u2xτ + u2xxτ ) dx dτ

+ C1

⎡
⎣

t∫

0

∫

Ω

(u2 + u2x) dx dτ +

t∫

0

τ∫

0

∫

Ω

u2xxξ dx dξ dτ +

t∫

0

∫

Ω

f2 dx dτ

⎤
⎦ ,

where δ is an arbitrary positive number, C1 is determined by a(x, t), c(x, t), αi(t), βi, i = 1, 2,

and the constants T and δ. We fix a small δ and, using the Gronwall lemma, find that the

solution u(x, t) to the problem (23), (2), (24), (25) satisfies the a priori estimate

t∫

0

∫

Ω

(u2τ + u2xτ + u2xxτ ) dx dτ +

∫

Ω

[u2(x, t) + u2x(x, t)] dx �M1,
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where the constantM1 depends only of the functions a(x, t), c(x, t), αi(t), βi(t), i = 1, 2, and the

number T . Combining this estimate with the inequality (26), we obtain the obvious estimate

‖u‖V �M2, (28)

where the constant M2 depends only on the functions a(x, t), c(x, t), αi(t), βi(t), i = 1, 2, and

the number T . Further, the representation

w(x, t) = u(x, t)− a1(x, t, λ)u(0, t)− a2(x, t, λ)u(1, t)

and the estimate (28) imply a similar estimate for the solution w(x, t) to the problem (20), (2),

(21). As was already mentioned, this estimate, the continuity of {L(λ)} with respect to λ, and

the solvability of the boundary value problem (20), (2), (21) in the space V for λ = 0, imply the

solvability of the boundary value problem (20), (2), (21) in the same space for λ = 1. Denote

by w1(x, t) the solution to the last problem. It is obvious that the function

u(x, t) = w1(x, t) + b1(x, t, 1)w1(0, t) + b2(x, t, 1)w1(1, t),

is a required solution to the boundary value problem (1), (2), (12), (13).

The uniqueness of a solution is obvious.

Consider the general case, i.e., the functions K1(x) and K2(x) do not vanish identically.

Introduce the notation

k1 = max
(x,t)∈Q

[ ∫

Q

K2
xx(x, y, t) dy

]
, k2 = max

(x,t)∈Q

[ ∫

Q

K2(x, y, t) dy

]
,

k3 = max
(x,t)∈Q

[ ∫

Q

K2
0(x, y, t) dy

]
, k4 = max

(x,t)∈Q

[ ∫

Q

K2
0xx(x, y, t) dy

]
.

Theorem 2. Assume that the conditions (9), (15)–(19) are satisfied. Let

∃ γ0 ∈
(
0,

√
7

2

)
: max

{
k1(1 + k3)

(
6 +

1

4γ20

)
+ k2k4

(
6 +

1

γ20

)
, k2

(
6 +

1

γ20

)}
<

1

4
. (29)

Then there exists a unique solution u(x, t) in V to Equation (1) in Q satisfying (2)–(4).

Proof. By Proposition 1, it suffices to establish the solvability of the problem (11), (2),

(12), (13) in the space V . We again use the parameter continuation method: for λ ∈ [0, 1] and

a given function g(x, t) in the space L2(Q) we consider the following family of boundary value

problems: find a solution v(x, t) to the equation

Lv − λΦ(x, t, B−1v) = g(x, t) (30)

in the rectangle Q that satisfies the conditions (2), (12), (13). By Theorem 1, under the condi-

tions (9), (15)–(19), the problem (30), (2), (12), (13) with λ = 0 is solvable in V . Consequently,

for the solvability of the problem (11), (2), (12), (13) in V it suffices to prove that all possible
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solutions to the problem (30), (2), (12), (13) satisfy an a priori estimate uniformly with respect

to λ. We consider the equality

t∫

0

∫

Ω

(vτ − vxxτ + cv)
[
vτ +

(
x− 1

2

)
vxτ − vxxτ

]
dx dτ

=

t∫

0

∫

Ω

[g + avxx + λΦ(x, τ,B−1u)]
[
vτ +

(
x− 1

2

)
vxτ − vxxτ

]
dx dτ (31)

which follows from Equation (30). In this equality, all the terms , except for the terms with

Φ(x, τ,B−1u), are transformed in the same way as in the equality (26). Further,

t∫

0

∫

Ω

u2τ dx dτ � 2(1 + k3)

1− δ20

t∫

0

∫

Ω

v2τ dx dτ +m1

t∫

0

∫

Ω

v2 dx dτ, (32)

t∫

0

∫

Ω

u2xxτ dx dτ � 2

1− δ20

t∫

0

∫

Ω

v2xxτ dx dτ +
2k4

1− δ20

t∫

0

∫

Ω

v2τ dx dτ +m2

t∫

0

∫

Ω

v2 dx dτ, (33)

∣∣∣∣∣
t∫

0

∫

Ω

( ∫

Ω

Kxx(x, y, τ)uτ (y, τ) dy

)
vτ (x, τ) dx dτ

∣∣∣∣∣

�
[
δ21
2

+
k1(1 + k3)

δ21(1− δ20)

] t∫

0

∫

Ω

v2τ dx dτ +m3

t∫

0

∫

Ω

v2 dx dτ, (34)

∣∣∣∣∣
t∫

0

∫

Ω

( ∫

Ω

Kxx(x, y, τ)uτ (y, τ) dy

)(
x− 1

2

)
vxτ (x, τ) dx dτ

∣∣∣∣∣

� δ22
4

t∫

0

∫

Ω

v2xτ dx dτ +
k1(1 + k3)

2δ22(1− δ20)

t∫

0

∫

Ω

v2τ dx dτ +m4

t∫

0

∫

Ω

v2 dx dτ, (35)

∣∣∣∣∣
t∫

0

∫

Ω

( ∫

Ω

Kxx(x, y, τ)uτ (y, τ) dy

)
vxxτ (x, τ) dx dτ

∣∣∣∣∣

� δ23
2

t∫

0

∫

Ω

v2xxτ dx dτ +
k1(1 + k3)

δ23(1− δ20)

t∫

0

∫

Ω

v2τ dx dτ +m5

t∫

0

∫

Ω

v2 dx dτ, (36)

∣∣∣∣∣
t∫

0

∫

Ω

(∫

Ω

K(x, y, τ)uyyτ (y, τ) dy

)
vτ (x, τ) dx dτ

∣∣∣∣∣

�
[
δ24
2

+
k2k4)

δ24(1− δ20)

] t∫

0

∫

Ω

v2τ dx dτ +
k2

δ24(1− δ20)

t∫

0

∫

Ω

v2xxτ dx dτ +m6

t∫

0

∫

Ω

v2 dx dτ, (37)
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∣∣∣∣∣
t∫

0

∫

Ω

( ∫

Ω

K(x, y, τ)uyyτ (y, τ) dy

)(
x− 1

2

)
vxτ (x, τ) dx dτ

∣∣∣∣∣ �
δ25
2

t∫

0

∫

Ω

v2xτ dx dτ

+
k2k4

δ25(1− δ20)

t∫

0

∫

Ω

v2τ dx dτ +
k2

δ25(1− δ20)

t∫

0

∫

ω

v2xxτ dx dτ +m7

t∫

0

∫

Ω

v2 dx dτ, (38)

∣∣∣∣∣
t∫

0

∫

Ω

( ∫

Ω

K(x, y, τ)uyyτ (y, τ) dy

)
vxxτ (x, τ) dx dτ

∣∣∣∣∣

�
[
δ26
2

+
k2

δ26(1− δ20)

] t∫

0

∫

Ω

v2xxτ dx dτ +
k2k4

δ26(1− δ20)

t∫

0

∫

Ω

v2τ dx dτ +m8

t∫

0

∫

Ω

v2 dx dτ, (39)

where δ0–δ6 are arbitrary positive numbers, m1–m8 are determined by the functions αi(t), βi(t),

Ki(x), i = 1, 2, and the number δ0–δ6 (the inequalities (32) and (33) are proved with the help of

the representation of u(x, t) via v(x, t) and the Hölder and Young inequalities. The inequalities

(34)–(39) are obtained by using the Hölder and Young inequalities and the inequalities (32) and

(33). By the obtained inequality, the Hölder and Young inequalities, the inequalities (22), (27),

and the conditions (2), (12), (13), (15)–(19), it is easy to obtain from (31) to the inequality

t∫

0

∫

Ω

[1
2
v2τ + 2v2xτ + v2xxτ

]
dx dτ +

c0
2

∫

Ω

[v2(x, t) + v2x(x, t)] dx

�
[
δ21
2

+
k1(1 + k3)

δ21(1− δ20)
+

k1(1 + k3)

2δ22(1− δ20)
+
k1(1 + k3)

δ23(1− δ20)
+
δ24
2

+
k2k4

δ24(1− δ20)

+
k2k4

δ25(1− δ20)
+

k2k4
δ26(1− δ20)

+ δ

] t∫

0

∫

Ω

v2τ dx dτ +

[
δ22
4

+
δ25
2

+ δ

] t∫

0

∫

Ω

v2xτ dx dτ

+

[
δ23
2

+
k2

δ24(1− δ20)
+

k2
δ25(1− δ20)

+
δ26
2

+
k2

δ26(1− δ20)
+ δ

] t∫

0

∫

Ω

v2xxτ dx dτ

+m9

⎡
⎣

t∫

0

∫

Ω

(v2 + v2x) dx dτ +

t∫

0

τ∫

0

∫

Ω

v2xxξ dx dξ dτ +

t∫

0

∫

Ω

g2 dx dτ

⎤
⎦ , (40)

where δ is an arbitrary positive number and m9 is determined by the functions a(x, t), c(x, t),

αi(t), βi(t), Ki(x), i = 1, 2, and the numbers T , δ, δ0–δ6. We fix δ1–δ6 by setting δ1 = δ4 = 1/2,

δ2 =
√
2γ0, δ5 = γ0, δ3 = δ6 = 1/

√
2. Now, for sufficiently small fixed δ and δ0, using the

condition (29), we get

t∫

0

∫

Ω

(v2τ + v2xτ + v2xxτ ) dx dτ +

∫

Ω

[v2(x, t) + v2x(x, t)] dx

� m0

⎡
⎣

t∫

0

∫

Ω

(v2 + v2x) dx dτ +

t∫

0

τ∫

0

∫

Ω

v2xxξ dx dξ dτ +

t∫

0

∫

Ω

g2 dx dτ

⎤
⎦ .
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This inequality and the Gronwall lemma imply that the solution to the boundary value problem

(30), (2), (12), (13) satisfies the a priori estimate

‖v‖V �M,

where the constant M is defined by the functions a(x, t), c(x, t), αi(t), βi(t), Ki(x), i = 1, 2, and

the number T . As was already mentioned, this estimate implies the solvability of the problem

(11), (2), (12), (13) in V . As above, taking into account Proposition 1, we obtain the solvability

of Problem I in the space V . The uniqueness of a solution is obvious.

3 Solvability of Problem II

As above, we assume that the required smoothness conditions are satisfied. We set

Δ2(t) = [1− α2(t)][1− β1(t)] + α1(t)[1− β2(t)].

Assume that

Δ2(t) �= 0, t ∈ [0, T ]. (41)

We set

μ0(t) =
1− β1(t)

Δ2(t)
, ν0(t) =

α1(t)

Δ2(t)
, μ1(t) =

β2(t)− 1

Δ2(t)
, ν1(t) =

1− α2(t)

Δ2(t)
,

R1(x, t) = μ0(t)K1(x) + ν0(x)K2(x), R2(x, t) = μ1(t)K1(x) + ν1(x)K2(x),

R(x, y, t) = xR1(y, t) +R2(y, t),

z1(t) = 1−
∫

Ω

xR1(x, t) dx, z2(t) = −
∫

Ω

R1(x, t) dx,

s1(t) = −
∫

Ω

xR2(x, t) dx, s2(t) = 1−
∫

Ω

R2(x, t) dx,

Δ21(t) = z1(t)s2(t)− z2(t)s1(t),

R0(x, y, t) =
1

Δ21(t)
{[xs2(t)− s1(t)]R1(y, t)− [xz2(t)− z1(t)]R1(y, t)}.

We again introduce the integral operator B by the formula

(Bu)(x, t) = u(x, t)−
∫

Ω

R(x, y, t)u(y, t) dy

under the condition

Δ21(t) �= 0, t ∈ [0, T ]. (42)

This operator is invertible, and the operator B−1 is defined by the formula

(B−1v)(x, t) = v(x, t) +

∫

Ω

R0(x, y, t)v(y, t) dy.
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We introduce the function Ψ(x, t, u) by the formula

Ψ(x, t, u) =

∫

Ω

Rxx(x, y, t)ut(y, t) dy −
∫

Ω

R(x, y, t)uyyt(y, t) dy

−
∫

Ω

a(x, t)R(x, y, t)uyy(y, t) dy +

∫

Ω

{a(x, y)Rxx(x, y, t)−Rt(x, y, t)

+Rxxt(x, y, t)− c(x, t)R(x, y, t) + c(y, t)R(x, y, t)}u(y, t) dy.

We consider the boundary value problem: find a solution v(x, t) to the equation

Lv −Ψ(x, t, B−1v) = f(x, t) in Q (43)

that satisfies (2) and the conditions

vx(0, t) = α1(t)v(0, t) + α2(t)vx(1, t), 0 < t < T, (44)

v(1, t) = β1(t)v(0, t) + β2(t)vx(1, t), 0 < t < T. (45)

Proposition 2. Suppose that (41) and (42) hold. Then if function v(x, t) is a solution in

V to the boundary value problem (43), (2), (44), (45), then the function u = B−1v is a solution

to Problem II in V .

The proof is similar to that of Proposition 1.

Theorem 3. Suppose that (14)–(17), (19), (41), and the following conditions hold:

8α1(t)ξ
2
1 + 8[α2(t)− β1(t)]ξ1ξ2 + [1− 8β2(t)]ξ

2
2 � 0

for

t ∈ [0, T ], (ξ1, ξ2) ∈ R
2; (46)

f(x, t) ∈ L2(Q). (47)

Then there exists a unique function u(x, t) in V that is a solution to Equation (1) in Q satisfying

the conditions (2), (44), and (45).

Proof. We again use the parameter continuation method. Let λ ∈ [0, 1]. We set

ai(x, t, λ) = λ[xαi(t) + βi(t)− αi(t)], i = 1, 2,

Δ(t, λ) = [1− a1(0, t, λ)][1− a2x(1, t, λ)]− a1x(1, t, λ)a2(0, t, λ),

b1(x, t, λ) =
1

Δ(t, λ)
{a1(x, t, λ)[1− a2x(1, t, λ)] + a2(x, t, λ)a1(1, t, λ)},

b2(x, t, λ) =
1

Δ(t, λ)
{a1(x, t, λ)a2(0, t, λ) + a2(x, t, λ)[1− a1(0, t, λ)]},

Ai(x, t, λ) = bixx(x, t, λ)− bi(x, t, λ), i = 1, 2,

Bi(x, t, λ) = bixxt(x, t, λ) + a(x, t)bixx(x, t, λ)− c(x, t)bi(x, t, λ)− bit(x, t, λ), i = 1, 2,

F (x, t, λ, ξ) = A1(x, t, λ)ξ1 +A2(x, t, λ)ξ2 +B1(x, t, λ)ξ3 +B2(x, t, λ)ξ4,

w(t) = (wt(0, t), wxt(1, t), w(0, t), wx(1, t)).

448



We consider the following family of auxiliary boundary value problems: find a function w(x, t)

that is a solution to the equation

L(λ)w ≡ wt − awxx + cw − wxxt − F (x, t, λ, w) = f (48)

in the rectangle Q and satisfies (2) and the conditions

wx(0, t) = w(1, t) = 0, 0 < t < T. (49)

For this family of problems, the continuity of the operator L(λ) with respect to λ is obvious.

The solvability of the problem (48), (2), (49) in the space V for λ = 0 is known [8, 9]. It remains

to prove an a priori uniform estimate λ for the solution in the space V .

We introduce the function u(x, t) = w(x, t) + b1(x, t, λ)w(0, t) + b2(x, t, λ)wx(1, t). It is

obvious that if w(x, t) belongs to V , then u(x, t) belongs to the same space and the function

u(x, t) is a solution to the equation

ut − auxx + cu− uxxt = f (50)

satisfying (2) and the condition

ux(0, t) = λ[α1(t)u(0, t) + α2(t)ux(1, t)], 0 < t < T, (51)

u(1, t) = λ[β1(t)u(0, t) + β2(t)ux(1, t)], 0 < t < T. (52)

We consider the equality

t∫

0

∫

Ω

(uτ − uxxτ + cu)[uτ −
(
x− 1

2

)
uxτ − uxxτ ] dx dτ

=

t∫

0

∫

Ω

(f + auxx)[uτ −
(
x− 1

2

)
uxτ − uxxτ ] dx dτ (53)

following from (50). Integrating by parts and using (2), (51), (52), it is easy to transform this

equality to the form

t∫

0

∫

Ω

[u2τ +
3

2
u2xτ + u2xxτ ] dx dτ +

1

2

∫

Ω

c(x, t)[u2(x, t) + u2x(x, t)] dx+
1

4

t∫

0

u2xτ (0, τ) dτ

+
1

4

t∫

0

{8λα1(τ)u
2
τ (0, τ) + 8λ[α2(τ)− β1(τ)]uτ (0, τ)uxτ (1, τ) + [1− 8λβ2(τ)]u

2
xτ (1, τ)} dτ

=

t∫

0

∫

Ω

(f + auxx)[uτ −
(
x− 1

2

)
uxτ − uxxτ ] dx dτ −

t∫

0

∫

Ω

cxuuxτ dx dτ

+
1

2

t∫

0

∫

Ω

cτ (u
2 + u2x) dx dτ +

t∫

0

∫

Ω

(
x− 1

2

)
uτuxτ dx dτ

+

t∫

0

∫

Ω

(
x− 1

2

)
cuuxτ dx dτ − 2λ

t∫

0

uτ (0, τ)[α
′
1(τ)u(0, τ) + α′

2(τ)ux(1, τ)]
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− uxτ (1, τ)[β
′
1(τ)u(0, τ) + β′2(τ)ux(1, τ)] dτ + λ

t∫

0

c(1, τ)u(1, τ)uxτ (1, τ) dτ

− λ

t∫

0

c(0, τ)u(0, τ)[α1(τ)uτ (0, τ) + α2(τ)uxτ (1, τ) + α′
1(τ)u(0, τ) + α′

2(τ)ux(1, τ)] dτ.

By (15)–(17), (19), (46), (22), (27), the Young inequality, and the Gronwall lemma, the solution

u(x, t) to the boundary value problem (50), (2), (51), (52) satisfies the required a priori estimate

‖u‖V �M3,

where the constant M3 is determined by the functions a(x, t), c(x, t), αi(t), βi(t), i = 1, 2, and

the number T . This estimate implies the solvability of the problem (54), (2), (51), (52) in the

space V for λ = 1. The function

u(x, t) = w1(x, t) + b1(x, t, 1)wt(0, t) + b(x, t, 1)w1x(1, t).

is the required solution to Problem III. The uniqueness of a solution is obvious.

We set

r1 = max
(x,t)∈Q

[ ∫

Ω

R2
xx(x, y, t) dy

]
, r2 = max

(x,t)∈Q

[ ∫

Ω

R2(x, y, t) dy

]
,

r3 = max
(x,t)∈Q

[ ∫

Ω

R2
0(x, y, t) dy

]
, r4 = max

(x,t)∈Q

[ ∫

Ω

R2
0xx(x, y, t) dy

]
.

Theorem 4. Suppose that (9), (15), (16), (47)–(49), and the following condition hold:

∃ γ0(x) ∈
(
0,

√
5

2

)
: r1(1 + r3)

(
4 +

1

4γ20

)
+ 2r2r4

(
6 +

1

γ20

)
<

1

4
, r2

(
4 +

1

γ20

)
<

1

2
. (54)

Then there exists a unique solution u(x, t) in V to Problem II.

The proof of this theorem is similar to that of Theorem 2 differs by only the choice of δ1–δ6
(δ1 = δ3 = δ4 = = δ6 =

1√
2
, δ2 =

√
2γ0, δ5 = γ0).

4 Solvability of Problem III

The scheme of the proof of Problem III is the same as that for Problems I and II. We set

Δ3(t) = β1(t) + β2(t)− α1(t)− α2(t)− 1.

Assume that

Δ3(t) �= 0, t ∈ [0, T ]. (55)
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We set

ϕ0(t) =
1

Δ3(t)
, ψ0(t) = − 1

Δ3(t)
, ϕ1(t) =

β1(t) + β2(t)− 1

Δ3(t)
, ψ1(t) = −α1(t) + α2(t)

Δ3(t)
,

S1(x, t) = ϕ0(t)K1(x) + ψ0(t)K2(x), S2(x, t) = ϕ1(t)K1(x) + ψ1(t)K2(x),

S(x, y, t) = xS1(y, t) + S2(y, t), z̃1(t) = 1−
∫

Ω

xS1(x, t) dx, z̃2(t) = −
∫

Ω

S1(x, t) dx,

s̃1(t) = −
∫

Ω

xS2(x, t) dx, s̃2(t) = 1−
∫

Ω

S2(x, t) dx, Δ31(t) = z̃1(t)s̃2(t)− z̃2(t)s̃(t),

S0(x.y, t) =
1

Δ31(t)
{[xs̃2(t)− s̃1(t)]S1(y, t)− [xz̃2(t)− z̃1(t)]S2(y, t)}.

We introduce the operator B by the formula

(Bu)(x, t) = u(x, t)− ∫
Ω

S(x, y, t)u(y, t) dy.

In the case

Δ31(t) �= 0, t ∈ [0, T ], (56)

this operator is invertible and B−1 is defined by the equality

(B−1v)(x, t) = v(x, t) +
∫
Ω

S0(x, y, t)v(y, t) dy.

Theorem 5. Suppose that (14)–(19), (55), and (56) hold. Then there exists a unique solu-

tion u(x, t) in V to Problem III.

We set

k̃1 = max
(x,t)∈Q

[ ∫

Ω

S2
xx(x, y, t) dy

]
, k̃2 = max

(x,t)∈Q

[ ∫

Ω

S2(x, y, t) dy

]
,

k̃3 = max
(x,t)∈Q

[ ∫

Ω

S2
0(x, y, t) dy

]
, k̃4 = max

(x,t)∈Q

[ ∫

Ω

S2
0xx(x, y, t) dy

]
.

Theorem 6. Suppose that (15)–(17), (19), (55), (56), and the following condition hold:

∃ γ0 ∈
(
0,

√
5

2

)
: k̃1(1 + k̃2)

(
4 +

1

4γ20

)
+ 2k̃2k̃4

(
6 +

1

γ20

)
<

1

4
, k̃2

(
4 +

1

γ20

)
<

1

2
. (57)

Then there exists a unique solution u(x, t) in V to Problem III.

The proof of Theorems 5 and 6 is similar to that of Theorems 1 and 3, 2 and 4 respectively.

The main a priori estimate is obtained by analyzing an equality of the form (53).

Remarks. 1. Using the parameter continuation method and estimates obtained in the proof

of Theorems 1–6, it is easy to establish the solvability in V of Problems I–III for loaded equations

Lu = f(x, t) +G(x, t, u) + F (x, t, u(t)),

where G(x, t, u) is the sum of integrals over Ω of the functions u(x, t), ut(x, t), ux(x, t), uxt(x, t),

uxx(x, t), uxxt(x, t) (with weights) and F (x, t, u) that is a linear form of traces of the function

451



u(x, t) and its derivatives at x = 0 and x = 1. Further, the operator L in these equations can

be replaced with a more general operator of the form

utt −A(x, t)uxxt − a1(x, t)uxx + a2(x, t)ux + b(x, t)ut + c(x, t)u

such that A(x, t) � a0 > 0 for (x, t) ∈ Q, under some natural smoothness conditions.

2. From the proof of Theorems 2, 4, and 6 it immediately follows that the conditions (29),

(54), and (57) can be slightly changed due to some other choice of the parameters δ1–δ6.

3. The conditions (29), (54), and (57) are smallness conditions. It is obvious that the set of

data of Problems I–III satisfying these conditions is not empty.
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