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1. INTRODUCTION

In the present paper, we study the solvability of spatially nonlocal boundary value problems for
one-dimensional linear pseudoparabolic equations with integral boundary conditions. Our methods
are based on the passage from a problem for a “good” equation with “bad” boundary conditions
to a problem with “good” boundary conditions but for a “bad” equation, known as a loaded
equation [1, pp. 13, 27], and on the proof of the solvability of the resulting problem by the method
of continuation with respect to a parameter and a priori estimates. Earlier, similar methods in
a close situation were efficiently used in [2–4].

2. STATEMENT OF THE PROBLEM

Let Ω be the interval (0, 1) of the axis Ox, and let Q be the rectangle Ω× (0, T ), 0 < T < +∞.
In the domain Q, consider the equation

ut − a(x, t)uxx + c(x, t)u − uxxt = f(x, t), (x, t) ∈ Q, (1)

with the nonlocal integral conditions

1∫

0

Hi(x, t)u(x, t) dx = 0, i = 1, 2, (2)

where a(x, t), c(x, t), f(x, t), and Hi(x, t) (i = 1, 2) are given functions defined for x ∈ Ω = [0, 1]
and t ∈ [0, T ].

Boundary value problem. Find a function u(x, t) that is a solution of Eq. (1) in the rectangle
Q and satisfies condition (2) and the initial condition

u(x, 0) = 0, x ∈ Ω. (3)

Note that the solvability of the initial–boundary value problem for the heat equation

ut − a(x, t)uxx + c(x, t)u = f(x, t) (4)

was studied in [2] by the method of regularization and continuation with respect to a parameter.
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SOLVABILITY OF A BOUNDARY VALUE PROBLEM 363

In the present paper, we prove the solvability of boundary value problems with the nonlocal
boundary conditions (2) by the methods used in the study of Eq. (4). In the case of local boundary
conditions, solvability theorems for Eq. (1), which is called a pseudoparabolic equation, or the Aller
equation, were proved in [5, p. 140; 6, p. 29].

Note also that problems for the heat equation (4) with constant coefficients and with general
nonlocal Samarskii conditions with constant coefficients were studied in [7] by the Fourier method.

A preliminary study of boundary value problems with nonlocal Samarskii boundary conditions
with variable coefficients was carried out in [8–10].

3. MAIN THEOREM

If we multiply the original equation (1) by Hi(x, t) and integrate the resulting relation over the
domain Ω, then, by using condition (2), we obtain the system of two equations

Hi(0, t)uxt(0, t) − Hi(1, t)uxt(1, t)
= −Hi(0, t)a(0, t)ux(0, t) + Hi(1, t)a(1, t)ux(1, t) + Hix(0, t)ut(0, t) − Hix(1, t)ut(1, t)

+ (Hi · a)x(0, t)u(0, t) − (Hi · a)x(1, t)u(1, t) +
∫

Ω

[(Hia)xx(x, t) − (Hic)(x, t) + Hit(x, t)]u(x, t) dx

+
∫

Ω

Hixx(x, t)ut(x, t) dx +
∫

Ω

Hi(x, t)f(x, t) dx, i = 1, 2. (5)

Suppose that the determinant of the matrix A on the left-hand side in system (5) is nonzero
for t ∈ [0, T ],

|A| = −H1(0, t)H2(1, t) + H1(1, t)H2(0, t) �= 0.

Then, instead of the nonlocal boundary conditions (5), we obtain conditions of the form

uxt(0, t) = α1(t)ux(0, t) + α2(t)ux(1, t) + α3(t)ut(0, t) + α4(t)ut(1, t)

+ α5(t)u(0, t) + α6(t)u(1, t) +

1∫

0

K1(x, t)u(x, t) dx +

1∫

0

N1(x, t)ut(x, t) dx, (6)

uxt(1, t) = β1(t)ux(0, t) + β2(t)ux(1, t) + β3(t)ut(0, t) + β4(t)ut(1, t)

+ β5(t)u(0, t) + β6(t)u(1, t) +

1∫

0

K2(x, t)u(x, t) dx +

1∫

0

N2(x, t)ut(x, t) dx, (7)

where αk(t), βk(t) (k = 1, . . . , 6), Kl(x, t), and Nl(x, t) (l = 1, 2) are given functions defined for
x ∈ Ω and t ∈ [0, T ]. Without loss of generality, we assume that

∫

Ω

Hi(x, t)f(x, t) dx = 0, i = 1, 2.

Boundary value problem 1. Find a function u(x, t) that is a solution of Eq. (1) in the
rectangle Q and satisfies the nonlocal boundary conditions (6) and (7) and the initial condition (3).

We introduce the following notation:

ϕ4(t) =
1
2

1∫

0

x2N2(x, t) dx, ψ4(t) =

1∫

0

xN2(x, t) dx.
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Note that the numbering of the functions ϕ4 and ψ4 is introduced for convenience and will be
explained below.

Let the norm on the space

V = {v(x, t) : v(x, t), vt(x, t), vxx(x, t), vxxt(x, t) ∈ L2(Q), vx(x, t) ∈ L∞(0, T ;W 1
2 (0, 1))}

be defined by the formula

‖v‖V = ‖v‖W 2,1
2 (Q) + ‖vxxt‖L2(Q) + ‖vx‖L∞(0,T ;W 1

2 (Ω)).

Theorem. Let the following conditions be satisfied :

a(x, t) ∈ C1(Q), c(x, t) ∈ C1(Q), a(x, t) ≥ a0 > 0,
c(x, t) ≥ c0 > 0, (x, t) ∈ Q;
αi(t) ∈ C1([0, T ]), βi(t) ∈ C1([0, T ]), i = 1, . . . , 6; (8)

Kp(x, t) ∈ C1(Q), Np(x, t) ∈ C1(Q), p = 1, 2;
α4(t) + β4(t) �= 2, α4(t)[1 + ψ4(t) − 4ϕ4(t)] + β4(t)[1 − ψ4(t)] �= 2 − 2ψ4(t) − 4ϕ4(t), t ∈ [0, T ];

q(ξ1, ξ2, t) ≡ α3(t)ξ2
1 + (α4(t) − β3(t))ξ1ξ2 − β4(t)ξ2

2 ≥ 0, t ∈ [0, T ], (ξ1, ξ2) ∈ R
2, (9)

f(x, t) ∈ L2(Q). (10)

Then there exists a unique solution u(x, t) ∈ V of the boundary value problem 1 in the rectangle Q.

Remark 1. Obviously, the conditions α4(t) + β4(t) �= 2 and

α4(t)[1 + ψ4(t) − 4ϕ4(t)] + β4(t)[1 − ψ4(t)] �= 2 − 2ψ4(t) − 4ϕ4(t)

are satisfied if the given functions α4(t), β4(t), and N2(x, t) are small in absolute value.

4. SOLVABILITY OF THE AUXILIARY BOUNDARY VALUE PROBLEM

Consider an auxiliary boundary value problem for Eq. (1).
Boundary value problem 2. Find a function u(x, t) that is a solution of Eq. (1) in the

rectangle Q and satisfies the nonlocal boundary conditions

uxt(0, t) = α1(t)ux(0, t) + α2(t)ux(1, t) + α3(t)ut(0, t)
+ α4(t)ut(1, t) + α5(t)u(0, t) + α6(t)u(1, t), (11)

uxt(1, t) = β1(t)ux(0, t) + β2(t)ux(1, t) + β3(t)ut(0, t)
+ β4(t)ut(1, t) + β5(t)u(0, t) + β6(t)u(1, t) (12)

and the initial condition (3).

Lemma. Let conditions (9) and (10) be satisfied , and let

a(x, t) ∈ C1(Q), c(x, t) ∈ C1(Q), a(x, t) ≥ a0 > 0,

c(x, t) ≥ c0 > 0, (x, t) ∈ Q;
αi(t) ∈ C1([0, T ]), βi(t) ∈ C1([0, T ]), i = 1, . . . , 6;

α4(t) + β4(t) �= 2, t ∈ [0, T ].

(13)

Then there exists a unique solution u(x, t) ∈ V of the boundary value problem 2 in the rectangle Q.

Proof. For (x, t) ∈ Q and λ ∈ [0, 1], we set

γk(x, t, λ) =
λx2

2
[βk(t) − αk(t)] + λxαk(t), k = 1, . . . , 6,
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and introduce the function

v(x, t, λ) =

t∫

0

[γ1ux(0, τ) + γ2ux(1, τ) + γ3ut(0, τ) + γ4ut(1, τ) + γ5u(0, τ) + γ6u(1, τ)] dτ.

Note that the function v(x, t) satisfies the relations

vxt(0, t) = λ[α1(t)ux(0, t) + α2(t)ux(1, t) + α3(t)ut(0, t)
+ α4(t)ut(1, t) + α5(t)u(0, t) + α6(t)u(1, t)],

vxt(1, t) = λ[β1(t)ux(0, t) + β2(t)ux(1, t) + β3(t)ut(0, t) + β4(t)ut(1, t) + β5(t)u(0, t) + β6(t)u(1, t)].

Consider the function w(x, t) = u(x, t)−v(x, t), where u(x, t) is a solution of the boundary value
problem (1), (11), (12), (3). By substituting the function u(x, t) = w(x, t)+v(x, t) into the original
equation (1), we obtain

wt − a(x, t)wxx + c(x, t)w − wxxt = f(x, t) − vt + a(x, t)vxx − c(x, t)v + vxxt. (14)

We express the function v(x, t) via the newly introduced function w(x, t) from the system of equa-
tions

wx(0, t) = ux(0, t) −
t∫

0

6∑
i=1

αi(τ)ui(τ) dτ, wx(1, t) =

t∫

0

6∑
i=1

βi(τ)ui(τ) dτ,

wt(0, t) = ut(0, t), wt(1, t) = ut(1, t) −
1
2

6∑
i=1

(αi(t) + βi(t))ui(t),

w(0, t) = u(0, t), w(1, t) = u(1, τ) − 1
2

t∫

0

6∑
i=1

(αi(τ) + βi(τ))ui(τ) dτ,

(15)

where (u1, u2, u3, u4, u5, u6) = (ux(0, t), ux(1, t), ut(0, t), ut(1, t), u(0, t), u(1, t)).
From the fourth equation in system (15), we find ut(1, t). If the condition α4(t) + β4(t) �= 2 is

satisfied, then from (8), we obtain

ut(1, t) =
1

2 − α4(t) − β4(t)
[2wt(1, t) + (α1(t) + β1(t))ux(0, t) + (α2(t) + β2(t))ux(1, t)

+ (α3(t) + β3(t))ut(0, t) + (α5(t) + β5(t))u(0, t) + (α6(t) + β6(t))u(1, t)]. (16)

By eliminating the function ut(1, t) given by (16) from system (15), we obtain the system of five
equations

wx(0, t) = ux(0, t) −
1

2 − α4 − β4

t∫

0

{2α4wτ(1, τ) + [(2 − β4)α1 + α4β1]ux(0, τ)

+ [(2 − β4)α2 + α4β2]ux(1, τ) + [(2 − β4)α3 + α4β3]uτ(0, τ)
+ [(2 − β4)α5 + α4β5]u(0, τ) + [(2 − β4)α6 + α4β6]u(1, τ)} dτ,

wx(1, t) = ux(1, t) −
1

2 − α4 − β4

t∫

0

{2β4wτ (1, τ) + [(2 − α4)β1 + β4α1]ux(0, τ)

+ [(2 − α4)β2 + β4α2]ux(1, τ) + [(2 − α4)β3 + β4α3]uτ(0, τ)
+ [(2 − α4)β5 + β4α5]u(0, τ) + [(2 − α4)β6 + β4α6]u(1, τ)} dτ,

wt(0, t) = ut(0, t), w(0, t) = u(0, t),

w(1, t) = u(1, t) − 1
2 − α4 − β4

t∫

0

{(α4 + β4)wτ (1, τ) + (α1 + β1)ux(0, τ)

+ (α2 + β2)ux(1, τ) + (α3 + β3)uτ (0, τ) + (α5 + β5)u(0, τ) + (α6 + β6)u(1, τ)} dτ.

(17)
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One can rewrite system (17) in the form


w0(t) = 
u0(t) −
1

2 − α4 − β4

[ t∫

0

B
u0 dτ −
t∫

0


cwτ (1, τ) dτ

]
,


w0(t) = (wx(0, t), wx(1, t), wt(0, t), w(0, t), w(1, t)) ≡ (w1, w2, w3, w5, w6),

u0(t) = (ux(0, t), ux(1, t), ut(0, t), u(0, t), u(1, t)) ≡ (u1, u2, u3, u5, u6),

(18)

where

B =

⎛
⎜⎜⎜⎜⎜⎝

(2 − β4)α1 + α4β1 (2 − β4)α2 + α4β2 (2 − β4)α3 + α4β3 (2 − β4)α5 + α4β5 (2 − β4)α6 + α4β6

(2 − α4)β1 + β4α1 (2 − α4)β2 + β4α2 (2 − α4)β3 + β4α3 (2 − α4)β5 + β4α5 (2 − α4)β6 + β4α6

0 0 0 0 0

0 0 0 0 0

α1 + β1 α2 + β2 α3 + β3 α5 + β5 α6 + β6

⎞
⎟⎟⎟⎟⎟⎠

,

and 
c = (2α4, 2β4, 0, 0, α4 + β4).
The integral equation (18) is a Volterra integral equation of the second kind [11, p. 102; 12, p. 110]

and has a unique solution, which has the form


u0(t) = 
w0(t) +

t∫

0


F0(τ, wτ (1, τ), 
w0) dτ, 
F0 = (F01, F02, 0, 0, F05).

By substituting the function 
u0 in (18) and ut(1, t) in (16) into system (17), we obtain

v(x, t) =

t∫

0

F (x, τ, λ, 
w(τ)) dτ, (19)

where 
w(t) = (wx(0, t), wx(1, t), wt(0, t), wt(1, t), w(0, t), w(1, t)). Now, by substituting the function
v(x, t) in (19) into Eq. (14), we finally obtain

wt − a(x, t)wxx + c(x, t)w − wxxt

= f(x, t) − F (x, t, λ, 
w(t)) + a(x, t)

t∫

0

Fxx(x, τ, λ, 
w(τ)) dτ − c(x, t)

t∫

0

F (x, τ, λ, 
w(τ)) dτ

+ Fxx(x, t, λ, 
w(t)) ≡ f(x, t) + Φ(x, t, λ, 
w(t)). (20)

Consider the following auxiliary boundary value problem: find a function w(x, t) that is a solu-
tion of Eq. (20) in the rectangle Q and satisfies the conditions

w(x, 0) = 0, x ∈ Ω, (21)
wxt(0, t) = wxt(1, t) = 0, t ∈ (0, T ). (22)

Note that if λ = 1, then the boundary value problem (20)–(22) is equivalent to the original boundary
value problem (1), (11), (12), (3).

Let us show that, under conditions (9), (10), and (13), this boundary value problem has a solution
in the space V .

By Λ we denote the set of numbers λ in the interval [0, 1] for which the boundary value prob-
lem (20)–(22) has a solution w(x, t) in the space V under conditions (9), (10), and (13). If we
show that the set Λ is nonempty, is open and closed, then it coincides with the entire interval [0, 1]
[13, p. 153].
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If λ = 0, then, under conditions (9), (10), and (13), the boundary value problem (20)–(22) is
solvable in the space V (see [4, p. 140; 6, p. 29]). Hence it follows that zero belongs to the set V ;
consequently, the set Λ is nonempty.

The fact that the set Λ is open and closed can be proved with the use of a priori estimates. Let
us derive the corresponding a priori estimate.

Let w(x, t) be a solution of the boundary value problem (20)–(22) in the space V . By using
relation (19), we set

u(x, t) = w(x, t) +

t∫

0

F (x, τ, λ, 
w(τ)) dτ.

By using the inequality

t∫

0

[v2(0, τ) + v2(1, τ)] dτ ≤ δ

t∫

0

∫

Ω

v2
x(x, τ) dx dτ + C(δ)

t∫

0

∫

Ω

v2(x, τ) dx dτ, (23)

where δ is an arbitrary positive number, one can readily show that the function u(x, t) belongs to
the space V . Note that the function u(x, t) is a solution of the following initial–boundary value
problem: find a function u(x, t) that is a solution of Eq. (1) in the rectangle Q and satisfies the
conditions

uxt(0, t) = λ[α1(t)ux(0, t) + α2(t)ux(1, t) + α3(t)ut(0, t)
+ α4(t)ut(1, t) + α5(t)u(0, t) + α6(t)u(1, t)], (24)

uxt(1, t) = λ[β1(t)ux(0, t) + β2(t)ux(1, t)
+ β3(t)ut(0, t) + β4(t)ut(1, t) + β5(t)u(0, t) + β6(t)u(1, t)], (25)

u(x, 0) = 0. (26)

Consider the relation

t∫

0

∫

Ω

(uτ − auxx + cu − uxxτ)(uτ − uxxτ) dx dτ =

t∫

0

∫

Ω

f(uτ − uxxτ) dx dτ ;

by integrating by parts, we obtain the relation

t∫

0

∫

Ω

[u2
τ + 2u2

xτ + u2
xxτ ] dx dτ +

1
2

∫

Ω

a(x, t)u2
xx(x, t) dx +

1
2

∫

Ω

[a(x, t) + c(x, t)]u2
x(x, t) dx

+
1
2

∫

Ω

c(x, t)u2(x, t) dx + 2

t∫

0

[uxτ(0, τ)uτ (0, τ) − uxτ(1, τ)uτ (1, τ)] dτ

=

t∫

0

∫

Ω

{
1
2
[aτu

2
xx + (aτ + cτ)u2

x + cτu
2] − axuxuτ − cxuuxτ

}
dx dτ

+

t∫

0

∫

Ω

f(uτ − uxxτ) dx dτ

t∫

0

[a(1, τ)ux(1, τ)uτ (1, τ) − a(0, τ)ux(0, τ)uτ (0, τ)] dτ

+

t∫

0

[c(1, τ)uxτ (1, τ)u(1, τ) − c(0, τ)uxτ (0, τ)u(0, τ)] dτ. (27)
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By taking into account the expressions for uxτ(1, τ) and uxτ(0, τ) in the boundary conditions (24)
and (25) and by using (9), we represent the fifth term on the left-hand side in relation (27) in the
form

2

t∫

0

[uxτ(0, τ)uτ (0, τ) − uxτ(1, τ)uτ (1, τ)] dτ

= 2λ

t∫

0

[α1ux(0, τ) + α2ux(1, τ) + α3uτ(0, τ) + α4uτ (1, τ) + α5u(0, τ) + α6u(1, τ)]uτ (0, τ) dτ

− 2λ

t∫

0

[β1ux(0, τ) + β2ux(1, τ) + β3uτ (0, τ) + β4uτ (1, τ) + β5u(0, τ) + β6u(1, τ)]uτ (1, τ) dτ

= 2λ

t∫

0

[α3u
2
τ(0, τ) + (α4 − β3)uτ (0, τ)uτ (1, τ) − β4u

2
τ (1, τ)] dτ + J

= 2λ

t∫

0

q(uτ (0, τ), uτ (1, τ), τ) dτ + J ≥ J, (28)

where

J = 2λ

t∫

0

[α1ux(0, τ) + α2ux(1, τ) + α5u(0, τ) + α6u(1, τ)]uτ (0, τ) dτ

− 2λ

t∫

0

[β1ux(0, τ) + β2ux(1, τ) + β5u(0, τ) + β6u(1, τ)]uτ (1, τ) dτ.

Note that the nonnegativity of the quadratic form (9) takes place, for example, if either α3(t) > 0
or β4(t) < 0 and α3(t)β4(t) − (α4(t) − β3(t))2 ≥ 0.

By using conditions (9), (10), and (13), the Young inequality, and inequality (23), and by
applying the Gronwall lemma, from (28), we finally obtain the a priori estimate

t∫

0

∫

Ω

[u2
τ + 2u2

xτ + u2
xxτ ] dx dτ +

∫

Ω

[u2
xx(x, t) + u2

x(x, t) + u2(x, t)] dx

+

t∫

0

q(uτ (0, τ), uτ (1, τ), τ) dτ ≤ K

T∫

0

∫

Ω

f 2 dx dτ, (29)

where K is a constant depending on the number T and the functions a(x, t), c(x, t), αi(t), and βj(t).
Let us show that the estimate (29) implies that Λ is a closed set.
Let {λn} be a sequence of points of Λ converging to a number λ0, let {wn(x, t)} be the sequence

of solutions of the boundary value problem (20)–(22) with λ = λn in the space V , and let

un(x, t) = wn(x, t) +

t∫

0

F (x, τ, λn, 
wn(τ)) dτ.

Set vnk(x, t) = un(x, t) − uk(x, t). The functions vnk(x, t) satisfy the relations

vnkt − avnkxx + cvnk − vnkxxt = 0, vnkxt(0, t) = λk
α
vnk(0, t) + (λn − λk)
α
un,

vnkx(1, t) = λk

β
vnk(1, t) + (λn − λk)
β
un,
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where

un = (unx(0, t), unx(1, t), unt(0, t), unt(1, t), un(0, t), un(1, t)).

By reproducing the derivation of the estimate (29) for the functions vnk(x, t) and by taking into
account the fact that the estimate (29) holds for the functions un(x, t) themselves, one can readily
show that

‖vnk‖V ≤ C1|λn − λk|,
where C1 is a constant depending on the functions a(x, t), c(x, t), αi(t), βj(t), and f(x, t) and the
number T . It follows from this inequality that {un(x, t)} is a Cauchy sequence in the space V .
In turn, the Cauchy property implies that there exists a function u0(x, t) such that u0(x, t) ∈
W 2,1

2 (Q)∩L∞(0, T ;W 2
2 (Ω)) and u0xxt(x, t) ∈ L2(Q); in addition, the functions u0(x, t) and u0xxt(x, t)

are the limits of the sequences {un(x, t)} and {unxxt(x, t)} in the corresponding spaces. Obviously,
the function u0(x, t) is a solution of the boundary value problem (1), (24)–(26) for λ = λ0. Set

w0(x, t) = u0(x, t) −
t∫

0

[γ1u0x(0, t) + γ2u0x(1, t) + γ3u0t(0, t)

+ γ4u0t(1, t) + γ5u0(0, t) + γ6u0(1, t)] dτ,

where

γk(x, t, λ0) =
λ0x

2

2
[βk(t) − αk(t)] + λ0xαk(t), k = 1, . . . , 6.

Obviously, the function w0(x, t) belongs to the space V and is a solution of the boundary value
problem (20)–(22) corresponding to the value λ = λ0. It follows that λ0 is a point of the set Λ.
The fact that a limit point of this set also belongs to it implies that the set is closed.

Now let us show that Λ is open. Let λ0 be a point of Λ, and let λ = λ0 + λ̃. Let us show that,
for small |λ̃|, the number λ belongs to Λ as well.

Set
Φ̃(x, t, λ, ξ) = Φ(x, t, λ, ξ) − Φ(x, t, λ0, ξ).

Let v(x, t) be a function in the space V . Consider the following boundary value problem: find
a function w(x, t) that is a solution of the equation

Lw = f + Φ(x, t, λ0, 
w) + Φ̃(x, t, λ,
v) (30)

in the rectangle Q and satisfies conditions (21) and (22). We have the inequality

‖Φ̃(x, t, λ,
v)‖L2(Q) ≤ M |λ̃| ‖v‖V (31)

with a constant M depending only on the functions a(x, t), c(x, t), αi(t), and βj(t). [One can readily
prove this inequality by using condition (13), the finite increment theorem, and inequality (23).]
Inequality (31), together with the assumption that the number λ0 belongs to the set Λ, implies that
the boundary value problem (30), (21), (22) has a solution w(x, t) in the space V . Consequently, the
boundary value problem (30), (21), (22) generates an operator G mapping the space V into itself,
G(v) = w. By reproducing the derivation of the estimate (29) for this boundary value problem
for the case in which f(x, t) ≡ 0 and by taking into account inequality (31), we find that if the
condition C0M |λ̃| < 1 is satisfied, then G is a contraction operator. Obviously, the fixed point of
the operator G is a solution of the equation

Lw = f + Φ(x, t, λ, 
w).

Consequently, for small |λ̃| (more precisely, if the above-represented inequality C0M |λ̃| < 1 holds),
the number λ belongs to the set Λ. It follows that Λ is an open set.
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Thus, the set Λ thus defined is nonempty, open, and closed. Consequently, it coincides with the
entire interval [0, 1]. In other words, if conditions (9), (10), and (13) hold, then the boundary value
problem (20)–(22) has a solution w(x, t) in the space V for all λ, including λ = 1.

Set

u(x, t) = w(x, t) +

t∫

0

F (x, τ, 1, 
w(τ)) dτ.

In other words, under conditions (9), (10), and (13), the boundary value problem (1), (11), (12),
(3) has a solution u(x, t) that belongs to the space V for all values of λ including λ = 1.

The uniqueness of solutions of the boundary value problem (1), (11), (12), (3) in the space V
follows from the estimate (29).

The proof of the lemma is complete. Note that the above-proved lemma is of interest in itself.

5. PROOF OF THE THEOREM

Let us return to the original problem (1)–(3). We introduce the notation

ϕp(t) =
1
2

1∫

0

x2Kp(x, t) dx, ψp(t) =

1∫

0

xKp(x, t) dx,

ϕp+2(t) =
1
2

1∫

0

x2Np(x, t) dx, ψp+2(t) =

1∫

0

xNp(x, t) dx, p = 1, 2.

Just as above, for (x, t) ∈ Q, we set

γk(x, t) =
x2

2
[βk(t) − αk(t)] + xαk(t), k = 1, . . . , 6,

and for λ ∈ [0, 1] we introduce the functions

v(x, t) = λ

t∫

0

[
γ1ux(0, τ) + γ2ux(1, τ) + γ3ut(0, τ) + γ4ut(1, τ) + γ5u(0, τ) + γ6u(1, τ)

+
(

x − x2

2

) 1∫

0

K1(x, τ)u(x, τ) dx +
x2

2

1∫

0

K2(x, τ)u(x, τ) dx

+
(

x − x2

2

) 1∫

0

N1(x, τ)ut(x, τ) dx +
x2

2

1∫

0

N2(x, τ)ut(x, τ) dx

]
dτ. (32)

Note that the function v(x, t) thus defined obviously satisfies the boundary conditions of the
form (6), (7).

Consider the function w(x, t) = u(x, t) − v(x, t), where u(x, t) is the solution of the bound-
ary value problem (1), (6), (7), (3). By substituting u(x, t) = w(x, t) + v(x, t) into the original
equation (1), we obtain

wt − a(x, t)wxx + c(x, t)w − wxxt = f(x, t) − vt + a(x, t)vxx − c(x, t)v + vxxt. (33)
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We introduce the notation
(u1(t), u2(t), u3(t), u4(t), u5(t), u6(t), u7(t), u8(t), u9(t), u10(t))

=

(
ux(0, t), ux(1, t), ut(0, t), ut(1, t), u(0, t), u(1, t),

1∫

0

K1(x, t)u(x, t) dx,

1∫

0

K2(x, t)u(x, t) dx,

1∫

0

N1(x, t)ut(x, t) dx,

1∫

0

N2(x, t)ut(x, t) dx

)
,

(w1, w2, w3, w4, w5, w6, w7, w8, w9, w10)

=

(
wx(0, t), wx(1, t), wt(0, t), wt(1, t), w(0, t), w(1, t),

1∫

0

K1(x, t)w(x, t) dx,

1∫

0

K2(x, t)w(x, t) dx,

1∫

0

N1(x, t)wt(x, t) dx,

1∫

0

N2(x, t)wt(x, t) dx

)
.

We determine the function v(x, t) via the newly introduced function w(x, t) from the system of
equations

wx(0, t) = ux(0, t) −
t∫

0

6∑
i=1

αi(τ)ui(τ) dτ −
t∫

0

1∫

0

[K1(x, τ)u(x, τ) + N1(x, τ)uτ (x, τ)] dx dτ,

wx(1, t) = ux(1, t) −
t∫

0

6∑
i=1

βi(τ)ui(τ) dτ −
t∫

0

1∫

0

[K2(x, τ)u(x, τ) + N2(x, τ)uτ (x, τ)] dx dτ,

wt(0, t) = ut(0, t),

wt(1, t) = ut(1, t) −
1
2

6∑
i=1

(αi(t) + βi(t))ui(t)

− 1
2

1∫

0

[K1(x, t)u(x, t) + N1(x, t)ut(x, t) + K2(x, t)u(x, t) + N2(x, t)ut(x, t)] dx,

w(0, t) = u(0, t),

w(1, t) = u(1, τ) − 1
2

t∫

0

6∑
i=1

(αi(τ) + βi(τ))ui(τ) dτ

− 1
2

t∫

0

1∫

0

[K1(x, τ)u(x, τ) + N1(x, τ)uτ (x, τ) + K2(x, τ)u(x, τ) + N2(x, τ)uτ (x, τ)] dx dτ,

1∫

0

K1(x, t)w(x, t) dx =

1∫

0

K1(x, t)u(x, t) dx − ϕ1(t)

t∫

0

6∑
i=1

[βi(τ) − αi(τ)]ui(τ) dτ

− ψ1(t)

t∫

0

6∑
i=1

αi(τ)ui(τ) dτ − [ψ1(t) − ϕ1(t)]

t∫

0

1∫

0

[K1(x, τ)u(x, τ) + N1(x, τ)uτ (x, τ)] dx dτ

− ϕ1(t)

t∫

0

1∫

0

[K2(x, τ)u(x, τ) + N2(x, τ)uτ (x, τ)] dx dτ,
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1∫

0

K2(x, t)w(x, t) dx =

1∫

0

K2(x, t)u(x, t) dx − ϕ2(t)

t∫

0

6∑
i=1

[βi(τ) − αi(τ)]ui(τ) dτ

− ψ2(t)

t∫

0

6∑
i=1

αi(τ)ui(τ) dτ − [ψ2(t) − ϕ2(t)]

t∫

0

1∫

0

[K1(x, τ)u(x, τ) + N1(x, τ)uτ (x, τ)] dx dτ

− ϕ2(t)

t∫

0

1∫

0

[K2(x, τ)u(x, τ) + N2(x, τ)uτ (x, τ)] dx dτ,

1∫

0

N1(x, t)wt(x, t) dx =

1∫

0

N1(x, t)ut(x, t) dx − ϕ3(t)
6∑

i=1

[βi(t) − αi(t)]ui(t)

− ψ3(t)
6∑

i=1

αi(t)ui(t) − [ψ3(t) − ϕ3(t)]

1∫

0

[K1(x, t)u(x, t) + N1(x, t)ut(x, t)] dx

− ϕ3(t)

1∫

0

[K2(x, t)u(x, t) + N2(x, t)ut(x, t)] dx,

1∫

0

N2(x, t)wt(x, t) dx =

1∫

0

N2(x, t)ut(x, t) dx − ϕ4(t)
6∑

i=1

[βi(t) − αi(t)]ui(t)

− ψ4(t)
6∑

i=1

αi(t)ui(t) − [ψ4(t) − ϕ4(t)]

1∫

0

[K1(x, t)u(x, t) + N1(x, t)ut(x, t)] dx

− ϕ4(t)

1∫

0

[K2(x, t)u(x, t) + N2(x, t)ut(x, t)] dx. (34)

From the fourth equation in system (34), we find u4(t) ≡ ut(1, t). If the condition p1(t) ≡
2 − α4(t) − β4(t) �= 0 is satisfied, then from (8), we obtain

u4(t) =
1

p1(t)

{
2wt(1, t) +

6∑
i=1
i�=4

(αi(t) + βi(t))ui(t)

+

1∫

0

[K1(x, t)u(x, t) + N1(x, t)ut(x, t) + K2(x, t)u(x, t) + N2(x, t)ut(x, t)] dx

}
.

From the ninth and tenth equations in system (34), we find

u9(t) ≡
1∫

0

N1(x, t)ut(x, t) dx, u10(t) ≡
1∫

0

N2(x, t)ut(x, t) dx.

Under the condition

p2(t) ≡ 2 − α4(t) − β4(t) − 4ϕ4(t)(1 − α4(t)) − ψ4(t)(2 − β4(t) + α4(t)) �= 0,
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from (8), we have

u9(t) =
1

p2(t)
[w9p1(t) + 2ϕ3(t)(β4(t) − α4(t) + 2ψ3(t)α4(t))w4

+ (2ϕ3(t)(1 − α4(t))(
α0 + 
β0) + ψ3(t)((2 − β4(t))
α0 + α4

β0))
u0],

u10(t) =
1

p2(t)
[w9p1(t) + 2ϕ4(t)(β4(t) − α4(t) + 2ψ4(t)α4(t))w4

+ (2ϕ4(t)(1 − α4(t))(
α0 + 
β0) + ψ4(t)((2 − β4(t))
α0 + α4

β0))
u0],

(35)

where


α0 = (α1, α2, α3, α5, α6, 1, 0), 
β0 = (β1, β2, β3, β5, β6, 0, 1),

u0(t) = (u1(t), u2(t), u3(t), u5(t), u6(t), u7(t), u8(t))

=

(
ux(0, t), ux(1, t), ut(0, t), u(0, t), u(1, t),

1∫

0

K1(x, t)u(x, t) dx,

1∫

0

K2(x, t)u(x, t) dx

)
.

By eliminating the functions u4(t), u9(t), and u10(t) found above from system (34), we obtain
the system of equations


w0(t) = 
u0(t) −
t∫

0


G0(τ) dτ, 
G0(t) = (G01(t), G02(t), 0, 0, G05(t), G06(t), G07(t)), (36)

where


w0(t) = (w1(t), w2(t), w3(t), w5(t), w6(t), w7(t), w8(t))

=

(
wx(0, t), wx(1, t), wt(0, t), w(0, t), w(1, t),

1∫

0

K1(x, t)w(x, t) dx,

1∫

0

K2(x, t)w(x, t) dx

)
,

G0k(t) =
1

p1(t)p2(t)
G0k(w4(t), w9(t), w10(t), 
u0(t)) (k = 1, 2, 5, 6, 7).

We rewrite system (36) in the form


w0(t) = 
u0(t) −
t∫

0

C(τ)
u0(τ) dτ −
t∫

0

[
c1w4(τ) + 
c2w9(τ) + 
c3w10(τ)] dτ, (37)

where
C(t) ≡ 1

p1(t)p2(t)
(aij)

is a seventh-order matrix whose row vectors are defined in closed form just as above and aij =
aij(α4, β4, ϕ3, ϕ4, ψ3, ψ4, 
α0, 
β0), ck are seven-dimensional vectors; moreover,


ck = 
ck(α4, β4, ϕ3, ϕ4, ψ3, ψ4, 
α0, 
β0) (k = 1, 2, 3).

The integral equation (37) is a Volterra integral equation of the second kind [11, p. 102; 12, p. 110]
and has a unique solution, which can be represented in the form


u0(t) = 
w0(t) +

t∫

0


F0(τ, w4(τ), w9(τ), w10(τ), 
w0(τ)) dτ, 
F0 = (F01, F02, 0, 0, F05, F06, F07).
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By substituting the functions 
u0(t), u4(t), u9(t), and u10(t) found above from (35) into the repre-
sentation (32), we obtain

v(x, t) =

t∫

0

F (x, τ, λ, 
w(τ)) dτ.

By substituting this expression for v(x, t) into Eq. (33), we finally derive the identity

wt − a(x, t)wxx + c(x, t)w − wxxt

= f(x, t) − F (x, t, λ, 
w(t)) + a(x, t)

t∫

0

Fxx(x, τ, λ, 
w(τ)) dτ

− c(x, t)

t∫

0

F (x, τ, λ, 
w(τ)) dτ + Fxx(x, t, λ, 
w(t))

≡ f(x, t) + Φ(x, t, λ, 
w(t)). (38)

Consider the following auxiliary boundary value problem: find a function w(x, t) that is a solu-
tion of Eq. (38) in the rectangle Q and satisfies the conditions

w(x, 0) = 0, x ∈ Ω, (39)
wxt(0, t) = wxt(1, t) = 0, t ∈ (0, T ). (40)

Note that for λ = 1 the boundary value problem (38)–(40) is equivalent to the original boundary
value problem (1), (6), (7), (3).

Next, just as in the proof of the auxiliary boundary value problem 2, under conditions (8)–(10),
this boundary value problem has a solution in the space V , which completes the proof.
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