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Abstract. We prove solvability of boundary value problems for forward-backward parabolic equations with a full matrix of gluing
conditions. As is known, in the case of forward-backward equations the smoothness of initial and boundary data does not ensure
Hölder smoothness of solutions. It is shown that the Hölder classes of solutions to boundary value problem for forward-backward
parabolic equations and the number of solvability conditions depend on the matrix of gluing (conjugation) conditions.

INTRODUCTION

For nonclassical boundary value problems, smoothness of initial and boundary data does not ensure the Hölder
smoothness of solutions. Applying the theory of singular integral equations allows us to indicate smoothness of the
data of the problem and necessary and sufficient conditions for Hölder smoothness of solutions. A unified approach
with general gluing conditions for these equations allows us to demonstrate that the nonintegral exponent of a Hölder
space can essentially influence the number of solvability conditions and smoothness of solutions to a nonclassical
equations.

In some simplest cases S.A. Tersenov describe necessary and sufficient solvability conditions of these problems
for second order parabolic equations in the spaces Hp,p/2

x t with p > 2 in [1]. Solvability (orthogonality) conditions
for the data of the problems in this article are written out in an explicit form. Note that the number of orthogonality
conditions is finite in the one-dimensional case in contrast to the multi-dimensional case [2].

In the present article we consider well-posedness questions for forward-backward 2n-parabolic equations with
n = 2, 3 and a full matrix of gluing conditions. It is demonstrated that solutions to boundary value problems depend
on a fractional exponent of a Hölder space and entries of the matrix of gluing conditions provided that necessary and
sufficient conditions for the input data of the problem hold.

STATEMENT OF THE PROBLEM

In the domain Q+ = R+ × (0,T ) we consider the system of equations

u1
t = Lu1, −u2

t = Lu2
(
L ≡ (−1)n+1 ∂

2n

∂x2n

)
. (1)

A solution to the system (1) is sought in the Hölder space Hp,p/2n
x t (Q+), p = 2nl + γ, 0 < γ < 1. It satisfies the

initial-boundary conditions
u1(x, 0) = φ1(x), u2(x,T ) = φ2(x), x > 0, (2)

and the gluing conditions

u⃗ 1(0, t) = A u⃗ 2(0, t), (3)
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where u⃗ k
= (uk, uk

x, . . . , u
k
x . . . x︸︷︷︸

2n−1

) and A is a nondegenerate matrix with constant real-valued coefficients.

We assume that φ1(x), φ2(x) ∈ Hp(R),

ω1(x, t) =
1
π

∫
R

U(x, t; ξ, 0)φ1(ξ) dξ, ω2(x, t) =
1
π

∫
R

U(ξ,T ; x, t)φ2(ξ) dξ

and employ the following integral representation for a solution to the system (1):

u1(x, t) =

t∫
0

−→U1(x, t; 0, τ)α⃗(τ) dτ + ω1(x, t), u2(x, t) =

T∫
t

−→U2(0, τ; x, t)β⃗(τ) dτ + ω2(x, t),

where −→U1,
−→U2 are row vectors, with −→U1 = (U,V1, . . . ,Vn−1), −→U2 = (U,W1, . . . ,Wn−1), U is a fundamental solution, Vp

and Wp are elementary Cattabriga solutions [2] of the first equation (1), and α⃗(t), β⃗(t) are column vectors of unknown
densities with components αp(t), βp(t), p = 0, 1, . . . , n−1. The functionsω1(x, t),ω2(x, t) are solutions to the equations
(1) satisfying the conditions (2) in R.

Consider the case of the upper triangular matrix

A =


a11 a12 . . . a1,2n−1 a1,2n
0 a22 . . . a2,2n−1 a2,2n
. . . . . . . . . . . . . . .
0 0 . . . a2n−1,2n−1 a2n−1,2n
0 0 . . . 0 a2n,2n

 . (4)

We are in the conditions of the article [3] in the case of a symmetric matrix A.

Parabolic Equations of the Forth Order
We consider the equation (1) for n = 2. Note that the case of a symmetric matrix A is considered also in [4,5]. We
assume that the entries ai j of A satisfy the condition of uniqueness of a solution to the boundary value problem (1)–(3).

Theorem 1. Let the entries of a nondegenerate matrix A of the form (4) satisfy the conditions ai j = 0, i < j ≤ 5,
a33 −

√
2a22 , 0, and φ1(x), φ2(x) ∈ Hp(R+) (p = 4l + γ). Then under the 4l conditions

Ls(φ1, φ2) = 0, s = 1, . . . , 4l (5)

there exists a unique solution to the equation (1), satisfying the conditions (2), (3) from the space
1) Hp,

x
p/4
t (Q+) if 0 < γ < 1 − 4θ;

2) Hq,
x

q/4
t (Q+), q = 4l + 1 − 4θ, if 1 − 4θ < γ < 1;

3) Hq−ε,
x

(q−ε)/4
t (Q+) if γ = 1− 4θ, where ε is an arbitrary small positive constant, θ = 1

π
arctan | ab | ∈ (0, 1

4 ), a = a33,
b = a33 −

√
2a22.

Theorem 2. Let the entries of a nondegenerate matrix A of the form (4) satisfy the conditions a24 , 0, a34 , 0,
and ∣∣∣∣∣ a13 a14

a33 a34

∣∣∣∣∣ , 0,
∣∣∣∣∣ a23 a24

a33 a34

∣∣∣∣∣ , 0. (6)

Assume also that φ1(x), φ2(x) ∈ Hp(R+) (p = 4l+γ). Then under 6l+2 conditions of the form (5) there exists a unique
solution to the equation (1) satisfying the conditions (2), (3) from the space Hp,

x
p/4
t (Q+).

Proof of the theorems

The scheme of the proof of Theorem 1. In view of the general results the densities αk(t), βk(t) (k = 0, 1) must belong
to the space Hq(0,T ) (q = p−3

4 ) and, moreover,

α(s)
k (0) = β(s)

k (T ) = 0 (s = 0, . . . , l − 1). (7)
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The gluing conditions (3) generate the following system of integral equations with the Abel operators relative to αk,
βk:



1
4Γ(

1
4 )

t∫
0

α0(τ)+α1(τ)

(t−τ)
1
4

dτ + ω1(0, t) = a11

(
1
4Γ(

1
4 )

T∫
t

β0(τ)+β1(τ)

(τ−t)
1
4

dτ + ω2(0, t)
)
+

+a12

(
− 1

2Γ(
1
2 )

T∫
t

β1(τ)

(τ−t)
1
2

dτ + ω2x(0, t)
)
+ a13

(
− 1

4Γ(
3
4 )

T∫
t

β0(τ)−β1(τ)

(τ−t)
3
4

dτ+

+ω2xx(0, t)
)
+ a14( π2β0(t) + ω2xxx(0, t)),

− 1
2Γ(

1
2 )

t∫
0

α1(τ)

(t−τ)
1
2

dτ + ω1x(0, t) + a22

(
− 1

2Γ(
1
2 )

T∫
t

β1(τ)

(τ−t)
1
2

dτ + ω2x(0, t)
)
+

+a23

(
− 1

4Γ(
3
4 )

T∫
t

β0(τ)−β1(τ)

(τ−t)
3
4

dτ + ω2xx(0, t)
)
+ a24( π2β0(t) + ω2xxx(0, t)) = 0,

− 1
4Γ(

3
4 )

t∫
0

α0(τ)−α1(τ)

(t−τ)
3
4

dτ + ω1xx(0, t) = a33

(
− 1

4Γ(
3
4 )

T∫
t

β0(τ)−β1(τ)

(τ−t)
3
4

dτ+

+ω2xx(0, t)
)
+ a34( π2β0(t) + ω2xxx(0, t)),

π
2α0(t) + ω1xxx(0, t) + a44( π2β0(t) + ω2xxx(0, t)) = 0.

(8)

Since a12 = a13 = a23 = 0, excluding, respectively, π2β0(t) + w2xxx(0, t) from the first two equations of the system (8),
from the second and third equations, and also from the third and forth equations, we obtain the following system of
integral equations of the form (8):



a14
2 Γ(

1
2 )

t∫
0

α1(τ)

(t−τ)
1
2

dτ + a14a22
2 Γ(

1
2 )

T∫
t

β1(τ)

(τ−t)
1
2

dτ =

= a24
4 Γ(

1
4 )

t∫
0

α0(τ)+α1(τ)

(t−τ)
1
4

dτ − a11a24
4 Γ(

1
4 )

T∫
t

β0(τ)+β1(τ)

(τ−t)
1
4

dτ+

+a24ω1(0, t) − a11a24ω2(0, t) + a14ω1x(0, t) + a14a22ω2x(0, t),

a24
4 Γ(

3
4 )

t∫
0

α0(τ)−α1(τ)

(t−τ)
3
4

dτ − a24a33
4 Γ(

3
4 )

T∫
t

β0(τ)−β1(τ)

(τ−t)
3
4

dτ =

= − a34
2 Γ(

1
2 )

t∫
0

α1(τ)

(t−τ)
1
2

dτ − a22a34
2 Γ(

1
2 )

T∫
t

β1(τ)

(τ−t)
1
2

dτ+

+a24ω1xx(0, t) − a33a24ω2xx(0, t) + a34ω1x(0, t) + a34a22ω2x(0, t),

π
2 a34α0(t) = a44

4 Γ(
3
4 )

t∫
0

α0(τ)−α1(τ)

(t−τ)
3
4

dτ − a33a44
4 Γ(

3
4 )

T∫
t

β0(τ)−β1(τ)

(τ−t)
3
4

dτ−

−a34ω1xxx(0, t) + a33a44ω2xx(0, t) − a44ω1xx(0, t),

π
2 (α0(t) + a44β0(t)) + ω1xxx(0, t) + a44ω2xxx(0, t) = 0.

(9)

For convenience, we assume that T = 1. Applying the inversion formula for the Abel operator to the first two equations
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in (8), we obtain an equivalent system of singular integral equations of the forth order of the form

a14α1(t) + a14a22
π

1∫
0

(
τ
t

) 1
2 β1(τ)
τ−t dτ = a24

Γ( 3
4 )

2π

t∫
0

α0(τ)+α1(τ)
(t−τ)3/4 dτ−

−a11a24
Γ( 1

4 )
2
√
π3

1∫
0

K1(t, τ)(β0(τ) + β1(τ)) dτ + d
dt

t∫
0

Φ0(τ)
(t−τ)1/2 dτ,

√
2a24(α0(t) − α1(t)) − a24a33(β0(t) − β1(t)) − a24a33

π

1∫
0

( τt )
1
4
β0(τ)−β1(τ)
τ−t dτ =

= −2 a34

Γ( 1
4 )

t∫
0

α1(τ)

(t−τ)
3
4

dτ − 2 a22a34√
πΓ( 3

4 )

1∫
0

K2(t, τ)β1(τ) dτ + d
dt

t∫
0

Φ1(τ)
(t−τ)1/4 dτ,

a34α0(t) = a44
Γ( 3

4 )
2

t∫
0

α0(τ)−α1(τ)

(t−τ)
3
4

dτ − a33a44
2π Γ(

3
4 )

1∫
t

β0(τ)−β1(τ)

(τ−t)
3
4

dτ − Φ2(t),

α0(t) + a44β0(t) = Φ3(t).

(10)

K1(t, τ) =


−2

3

(
τ

t

) 3
4 F

(
1
4 ,

3
4 ,

7
4 ; τt

)
(t − τ)3/4 =

K0
1 (t, τ)

(t − τ)3/4 , τ < t,(
τ

t

) 1
2 F

(
− 1

2 ,
1
4 ,

1
2 ; t
τ

)
(τ − t)3/4 =

K1
1 (t, τ)

(τ − t)3/4 , τ > t,

K2(t, τ) =


−1

2

(
τ

t

) 1
2 F

(
1
4 ,

1
2 ,

3
2 ; τt

)
(t − τ)3/4 =

K0
2 (t, τ)

(t − τ)3/4 , τ < t,(
τ

t

) 1
4 F

(
− 1

4 ,
1
4 ,

3
4 ; t
τ

)
(τ − t)3/4 =

K1
2 (t, τ)

(τ − t)3/4 , τ > t.

To prove existence of a solution αk(t), βk(t) (k = 0, 1) to the system (10) lying in the space Hq (q = (p − 3)/4,
p = 4l+γ, 0 < γ < 1) and satisfying the conditions (7), we reduce the boundary value problem (1)–(3) to the following
system of singular integral equations of the normal type:

Kβ⃗ ≡ Pβ⃗(t) − 1
π

1∫
0

N(t, τ)β⃗(τ)
τ − t

dτ = Q⃗(t), (11)

where

β⃗(t) = (β̃(l−1)
0 (t), β̃(l−1)

1 (t)),

β̃(l−1)
i (t) = β(l−1)

i (t) − β(l−1)
i (0)(1 − t),

P =
(

a14a24a33a34 −a14a24a33a34
−a34a44 0

)
,

N(t, τ) =
(

a14a24a33a34( t
τ
)3/4 a14a24a33a34( t

τ
)3/4 −

√
2a14a22a24a34( t

τ
)1/2

0 0

)
.

The system of singular equations (11) can be rewritten as follows: a33β̃
(l−1)
1 (t) − a33−

√
2a22
π

1∫
0

β̃(l−1)
1 (τ)
τ−t dτ + 1

π

1∫
0

M(t, τ)β̃(l−1)
1 (τ) dτ = q̄1(t),

a34a44β̃
(l−1)
0 (t) = q2(t).

(12)
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Separating out the characteristic part of the singular equation in (12), we infer

aβ̃(l−1)
1 (t) − b

π

1∫
0

β̃(l−1)
1 (τ)
τ − t

dτ = g(t), a = a33, b = a33 −
√

2a22. (13)

A solution to the singular integral equation (13) in the class of functions bounded at the ends of the segment (0, 1)
is sought with the use of the piecewise analytic function [6,7]

Ψ(z) =
1

2πi

1∫
0

β̃(l−1)
1 (τ)
τ − z

dτ =
χ(z)
2πi

1∫
0

g(τ) dτ
(a − bi)χ+(τ)(τ − z)

, (14)

where the canonical function χ(z) = zθ(z − 1)1−θ if a, b are of different signs and χ(z) = z1−θ(z − 1)θ otherwise and
θ = 1

π
arctan | ab |. Since the index κ of the Riemann-Hilbert problem is equal to −1, the equality (14) is fulfilled under

the condition ∫ 1

0

g(τ)
χ(τ)

dτ = 0. (15)

In this case, we have

β̃(l−1)
1 (t) = Ψ+(t) − Ψ−(t) =

1
2

g(t) − χ(t)
2π

1∫
0

g(τ) dτ
χ(τ)(τ − t)

. (16)

The formulas (15) can be considered as necessary and sufficient conditions for boundedness of β̃(l−1)
1 (t) at t = 1.

Inserting the values of g(t) in (16) and taking the first equation in (12) into account, we arrive at the system of
Fredholm equations

β⃗ + kβ⃗ = Q⃗∗, (17)

where

kβ⃗ = −1
π

1∫
0

N(t, τ)β⃗(τ) dτ.

All bounded integrable solutions to the Fredholm system (17) obviously belong to the Hölder space at all points of the
contour (0, 1) different form the ends. The properties of the kernel N(t, τ) and the free term Q⃗∗ imply that all bounded
integrable solutions to the Fredholm systems (17) at the points 0,1 behave as t

1
2+θ(1 − t)

1
2−θ provided that a and b are

of different signs and as t
1
2−θ(1 − t)

1
2+θ otherwise.

By the Mushelishvili theorem about the membership of the Cauchy type integral in the Hölder class at the ends of
integration contour (see [8,9]) provided that 1+γ

4 <
1
2 −θ (θ < 1

4 ), we establish that solutions to the Fredholm equations
(17) belong to the space H

1+γ
4 (0, 1) and vanish at 0, 1 with the order 1+γ

4 . Moreover, solutions to the Fredholm equations
(17) satisfy the Hölder condition with exponent 1

2 − θ for 1 − 4θ < γ < 1 and the Hölder condition with exponent
1
2 − θ − ε for γ = 1 − 4θ.

Thus, the system of equations (17) is equivalent to the initial system of equations (8) provided that the conditions
of the form (5) hold.

Solvability of the Fredholm system of equations (17) results from uniqueness of solutions to the main problem
(1)–(3) and uniqueness of their representations through potentials. Insert the values of the functions

β⃗(s)(t) =
l−2∑
k=s

β⃗(k)(0)
(k−s)! tk−s + 1

(l−2−s)!

t∫
0

(t − τ)l−2−sβ⃗(l−1)(τ) dτ,

(s = 0, . . . , l − 2)
(18)

found by the Taylor formula in our conditions of the form (5). We obtain the 4l solvability conditions (5) for the
problem (1)–(3) in the space Hp,p/4

x t (Q+). The proof is complete.
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Proof of Theorem 2. In this case the system (11) of singular equations can be rewritten as follows:
∣∣∣∣∣ a13 a14

a33 a34

∣∣∣∣∣ · ∣∣∣∣∣ a23 a24
a33 a34

∣∣∣∣∣ · β̃(l−1)
1 (t) + 1

π

1∫
0

β̃(l−1)
1 (τ)
τ−t dτ

 = q̃1(t),

a34a44β̃
(l−1)
0 (t) = q̃2(t),

(19)

where θ = 1
4 and χ(z) = z1/4(z−1)3/4 is the canonical function. We are in the conditions of the article [4], namely, if the

conditions of Theorem 2 for θ ∈ [ 1
4 ,

1
2 ) hold then a unique solution to the problem (1)—(3) from the space Hp,

x
p/4
t (Q+)

exists provided that 6l + 2 conditions of the form (5) hold. The theorem is proven.
Remark.
1. Theorems 1 and 2 remains valid if at least one of the entries a13, a14, and a24 of the nondegenerate matrix

(4) of gluing conditions is different from zero and the conditions (6) holds. If the nondegenerate matrix (4) of gluing
conditions is such that a13 = a14 = a24 = 0 then under the conditions (6) the unconditional solvability theorem holds.

2. Similar theorems are valid for n = 3 in the case of forward-backward parabolic equations of the six order.
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