Parabolic equations with changing time direction and a full matrix of gluing conditions

Sergey V. Popov

Citation: AIP Conference Proceedings 1907, 030009 (2017);
View online: https://doi.org/10.1063/1.5012631
View Table of Contents: http://aip.scitation.org/toc/apc/1907/1
Published by the American Institute of Physics

Parabolic Equations with Changing Time Direction and a Full Matrix of Gluing Conditions

Sergey V. Popov ${ }^{1, \mathrm{a})}$
${ }^{1}$ Ammosov North-Eastern Federal University, 58 Belinsky str., Yakutsk 677000, Russia
a) guspopov@mail.ru

Abstract

Solvability of a boundary value problems for $2 n$-parabolic equations with changing time direction in the case of a full matrix of gluing conditions is established. It is shown that Hölder classes of solutions depend both on a noninteger Hölder exponent and the entries of the matrix of gluing conditions under finitely many necessary and sufficient conditions on the data of the problem.

INTRODUCTION

We consider $2 n$-parabolic equations with changing time direction and general gluing conditions. For such problems, the smoothness of initial and boundary data does not ensure the membership of a solution in some Hölder space [1]. Application of the theory of singular equations along with the smoothness of the data of the problem makes it possible to find additional necessary and sufficient conditions ensuring that a solution belongs to the Hölder spaces $H_{x}^{p, p / 2 n}$ for $p \geq 2 n$. A unified approach applied under general gluing conditions to such equations shows that the noninteger exponent $p-[p]$ of the Hölder spaces $H_{x t}^{p, p / 2 n}$ can influences essentially both the number of solvability conditions and the smoothness of a solution to a $2 n$-parabolic equations with changing time direction.

Conditions ensuring the solvability of boundary value problems for $2 n$-parabolic equations with changing time direction are written out explicitly in the articles [2,3].

To prove $[p]$-solvability for $n=2$ and $n=3$, the general diagonal gluing conditions are considered. Moreover, the dependence of the exponents of the Hölder spaces on the weight gluing functions is found and, for $n \geq 4$, it turns out that it suffices to consider continuous gluing conditions including the $(2 n-1)$-th derivative on the boundary.

In this article we consider the questions of well-posedness of boundary value problems for $2 n$-parabolic equations with changing time direction with the full matrix of gluing conditions. As is shown in [4], the Hölder classes of solutions depend both on a nonintegral Hölder exponent and the entries of a matrix of gluing conditions under necessary and sufficient conditions on the data of the problem.

2n-PARABOLIC EQUATIONS

In the domain $Q^{+}=\mathbb{R}^{+} \times(0, T)$ we consider the system of equations

$$
\begin{equation*}
u_{t}^{1}=L u^{1}, \quad-u_{t}^{2}=L u^{2} \quad\left(L \equiv(-1)^{n+1} \frac{\partial^{2 n}}{\partial x^{2 n}}\right) . \tag{1}
\end{equation*}
$$

A solution to the equations (1) is sought in the Hölder space $H_{x t}^{p, p / 2 n}\left(Q^{+}\right), p=2 n l+\gamma, 0<\gamma<1$; it satisfies the initial conditions

$$
\begin{equation*}
u^{1}(x, 0)=\varphi_{1}(x), \quad u^{2}(x, T)=\varphi_{2}(x), x>0 \tag{2}
\end{equation*}
$$

and the gluing conditions

$$
\begin{equation*}
\vec{u}^{1}(0, t)=A \vec{u}^{2}(0, t), \tag{3}
\end{equation*}
$$

where $\vec{u}^{k}=(u^{k}, u_{x}^{k}, \ldots, \underbrace{k}_{2 n-1} \ldots x)$, and A is a nonsingular matrix with nonzero constant real entries.
Assume that $\varphi_{1}(x), \varphi_{2}(x) \in H^{p}(\mathbb{R})$,

$$
\omega_{1}(x, t)=\frac{1}{\pi} \int_{\mathbb{R}} U(x, t ; \xi, 0) \varphi_{1}(\xi) d \xi, \quad \omega_{2}(x, t)=\frac{1}{\pi} \int_{\mathbb{R}} U(\xi, T ; x, t) \varphi_{2}(\xi) d \xi .
$$

We use the following integral representation of a solution to the system (1):

$$
\begin{equation*}
u^{1}(x, t)=\int_{0}^{t} \overrightarrow{U_{1}}(x, t ; 0, \tau) \vec{\alpha}(\tau) d \tau+\omega_{1}(x, t), \quad u^{2}(x, t)=\int_{t}^{T} \overrightarrow{U_{2}}(0, \tau ; x, t) \vec{\beta}(\tau) d \tau+\omega_{2}(x, t), \tag{4}
\end{equation*}
$$

where $\overrightarrow{U_{1}}, \overrightarrow{U_{2}}$ are the row vectors $\overrightarrow{U_{1}}=\left(U, V_{1}, \ldots, V_{n-1}\right), \overrightarrow{U_{2}}=\left(U, W_{1}, \ldots, W_{n-1}\right), U$ is a fundamental solution, V_{p} and W_{p} are L. Cattabriga's elementary solutions [5] of first equation (1), and $\vec{\alpha}(t), \vec{\beta}(t)$ are column vectors of unknown densities with components $\alpha_{p}(t), \beta_{p}(t), p=0,1, \ldots, n-1$. The functions $\omega_{1}(x, t), \omega_{2}(x, t)$ are solutions to the equation (1) satisfying the conditions (2) in \mathbb{R}.

Without loss of generality, we can consider the case of the matrix

$$
A=\left(\begin{array}{ccccc}
a_{11} & 0 & \ldots & 0 & 0 \\
0 & -a_{22} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & a_{2 n-2,2 n-2} & 1 \\
0 & 0 & \ldots & 0 & -a_{2 n-1,2 n-1}
\end{array}\right) .
$$

In the case of the symmetric matrix A, we are in the conditions of the article [5]. We assume that the entries $a_{i j}$ of A satisfy the condition of uniqueness of a solution to the boundary value problem (1)-(3), i. e.,

$$
\int_{0}^{T}\left\{\left[\sum_{i=0}^{n-1}(-1)^{i} \frac{\partial^{i} u^{1}}{\partial x^{i}} \cdot \frac{\partial^{2 n-1-i} u^{1}}{\partial x^{2 n-1-i}}\right]_{x=+0}-\left[\sum_{i=0}^{n-1}(-1)^{i} \frac{\partial^{i} u^{2}}{\partial x^{i}} \cdot \frac{\partial^{2 n-1-i} u^{2}}{\partial x^{2 n-1-i}}\right]_{x=+0}\right\} d t=0
$$

As is known, if the densities $\vec{\alpha}(t)$ and $\vec{\beta}(t)$ belong to the space $H^{q}(0, T)\left(q=\frac{p-(2 n-1)}{2 n}\right)$ and satisfy the conditions

$$
\begin{equation*}
\vec{\alpha}^{(s)}(0)=\vec{\beta}^{(s)}(T)=0, s=0, \ldots, l-1, \tag{5}
\end{equation*}
$$

then $u^{1}(x, t), u^{2}(x, t) \in H_{x t}^{p, p / 2 n}\left(Q^{+}\right)$, where $p=2 n l+\gamma, 0<\gamma<1$.
The gluing conditions (3) generate the following system of integral equations with Abel's operators with respect
to the unknown densities $\vec{\alpha}(t), \vec{\beta}(t)$:

$$
\left\{\begin{array}{l}
\begin{array}{rl}
\int_{0}^{t} \frac{\partial^{i} \vec{U}_{1}}{\partial x^{i}}(0, t ; 0, \tau) \vec{\alpha}(\tau) d \tau+\frac{\partial^{i} \omega_{1}}{\partial x^{i}}(0, t)= \\
= & (-1)^{i} a_{i i}\left[\int_{t}^{T} \frac{\partial^{i} \vec{U}_{2}}{\partial x^{i}}(0, \tau ; 0, t) \vec{\beta}(\tau) d \tau+\frac{\partial^{i} \omega_{2}}{\partial x^{i}}(0, t)\right] \\
& i=0,1, \ldots, 2 n-3
\end{array} \\
\begin{array}{rl}
\int_{0}^{t} \frac{\partial^{2 n-2} \vec{U}_{1}}{\partial x^{2 n-2}}(0, t ; 0, \tau) \vec{\alpha}(\tau) d \tau+\frac{\partial^{2 n-2} \omega_{1}}{\partial x^{2 n-2}}(0, t)= \\
= & a_{2 n-2,2 n-2} \int_{t}^{T} \frac{\partial^{2 n-2} \vec{U}_{2}}{\partial x^{2 n-2}}(0, \tau ; 0, t) \vec{\beta}(\tau) d \tau+a_{2 n-2,2 n-2} \frac{\partial^{2 n-2} \omega_{2}}{\partial x^{2 n-2}}(0, t) \\
& +\int_{-\infty}^{0} \vec{B}_{0}(\eta) d \eta \cdot \vec{\beta}(t)+(-1)^{n} \frac{2 n}{\Gamma\left(\frac{1}{2 n}\right)} \frac{\partial^{2 n-1} \omega_{2}}{\partial x^{2 n-1}}(0, t), \\
\int_{0}^{\infty} \vec{A}_{0}(\eta) d \eta \cdot \vec{\alpha}(t)+(-1)^{n} \frac{2 n}{\Gamma\left(\frac{1}{2 n}\right)} \frac{\partial^{2 n-1} \omega_{1}}{\partial x^{2 n-1}}(0, t)= \\
& -a_{2 n-1,2 n-1} \int_{-\infty}^{0} \vec{B}_{0}(\eta) d \eta \cdot \vec{\beta}(t)-(-1)^{n} \frac{2 n a_{2 n-1,2 n-1}}{\Gamma\left(\frac{1}{2 n}\right)} \frac{\partial^{2 n-1} \omega_{2}}{\partial x^{2 n-1}}(0, t),
\end{array}
\end{array}\right.
$$

where

$$
\begin{gathered}
\vec{A}_{i}(\eta)=\left\{\bar{f}^{(i)}(\eta), \bar{g}_{1}^{(i)}(\eta), \ldots, \bar{g}_{n-1}^{(i)}(\eta)\right\}, \quad \vec{B}_{i}(\eta)=\left\{\bar{f}^{(i)}(-\eta), \bar{h}_{1}^{(i)}(-\eta), \ldots, \bar{h}_{n-1}^{(i)}(-\eta)\right\}, \\
\bar{f}^{(i)}(\eta)=\frac{2 n f^{(i)}(\eta)}{\Gamma\left(\frac{1+i}{2 n}\right)}, \quad \bar{g}_{p}^{(i)}(\eta)=\frac{2 n g_{p}^{(i)}(\eta)}{\Gamma\left(\frac{1+i}{2 n}\right)}, \quad \bar{h}_{p}^{(i)}(\eta)=\frac{2 n h_{p}^{(i)}(\eta)}{\Gamma\left(\frac{1+i}{2 n}\right)}
\end{gathered}
$$

and the functions $f(\eta), g_{p}(\eta), h_{p}(\eta)$ are the solutions to a linear differential equation of $(2 n-1)$-th order [5]

$$
z^{(2 n-1)}(\eta)-\frac{(-1)^{n}}{2 n} \cdot \eta \cdot z(\eta)=0
$$

Deriving the last equality in (6), we employ the equalities

$$
\begin{aligned}
& \left.\int_{0}^{t} \frac{\partial^{2 n-1} V_{p}(x, t ; 0, \tau)}{\partial x^{2 n-1}}\right|_{x=0} \alpha_{p}(\tau) d \tau=(-1)^{n} \alpha_{p}(t) \int_{0}^{\infty} g_{p}(\eta) d \eta \\
& \left.\int_{t}^{T} \frac{\partial^{2 n-1} W_{p}(0, \tau ; x, t)}{\partial x^{2 n-1}}\right|_{x=0} \beta_{p}(\tau) d \tau=(-1)^{n} \beta_{p}(t) \int_{-\infty}^{0} h_{p}(\eta) d \eta
\end{aligned}
$$

To prove the existence of solutions $\vec{\alpha}(t), \vec{\beta}(t)$ to the system (6) from the space $H^{l-1+\frac{\gamma+1}{2 n}}(0, T)$ satisfying the conditions (5), we reduce the boundary value problem (1)-(3) to the following system of singular integral equations of the normal type:

$$
\begin{equation*}
K_{1} \vec{\beta} \equiv A \vec{\beta}(t)-\frac{1}{\pi} \int_{0}^{T} \frac{B(t, \tau) \vec{\beta}(\tau)}{\tau-t} d \tau=\vec{Q}(t) \tag{7}
\end{equation*}
$$

where A and B are matrices of n-th order written out explicitly. For $n=3$, the matrices A and B are as follows [6]:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
-a_{66} & -\frac{1}{12}\left(a_{22}-a_{44}+4 a_{66}\right) & \left.-\frac{\sqrt{3}}{12} a_{22}+a_{44}\right) \\
0 & \frac{1}{4}\left(a_{22}-a_{44}\right) & \frac{\sqrt{3}}{4}\left(a_{22}+a_{44}\right) \\
a_{11} & \frac{1}{2} a_{11}+\frac{\sqrt{3}}{12}\left(a_{22}+\sqrt{3} a_{44}\right) & \frac{\sqrt{3}}{2} a_{11}+\frac{1}{4}\left(a_{22}-a_{44}\right)
\end{array}\right), \\
B \equiv B(t, t)=\left(\begin{array}{ccc}
\frac{1}{4} a_{33} & -\frac{1}{12}\left(3 a_{33}+\sqrt{3} a_{22}+\sqrt{3} a_{44}\right) & -\frac{1}{4}\left(a_{22}-a_{44}\right) \\
-\frac{3}{4} a_{33} & \frac{\sqrt{3}}{4}\left(\sqrt{3} a_{33}+a_{22}+a_{44}\right) & \frac{3}{4}\left(a_{22}-a_{44}\right) \\
\frac{\sqrt{3}}{12}\left(4 a_{11}+a_{33}\right) & \frac{\sqrt{3}}{12}\left(2 a_{11}-a_{33}+\sqrt{3} a_{22}-\sqrt{3} a_{44}\right) & \frac{\sqrt{3}}{4}\left(2 a_{11}+a_{22}+a_{44}\right)
\end{array}\right) .
\end{gathered}
$$

Theorem 1 Let $\varphi_{1}, \varphi_{2} \in H^{p}\left(\mathbb{R}^{+}\right)(p=2 n l+\gamma), n \geq 2$ and $\theta \in\left(\frac{1}{2}-\frac{1}{n} ; \frac{1}{2}-\frac{1}{2 n}\right)$. If the $2 n l$ conditions

$$
\begin{equation*}
L_{s}\left(\varphi_{1}, \varphi_{2}\right)=0, \quad s=1, \ldots, 2 n l \tag{8}
\end{equation*}
$$

are fulfilled, then there exists a unique solution to the equation (1) satisfying the conditions (2), (3) from space

1) $H_{x t}^{p, p / 2 n}\left(Q^{+}\right)$, where $0<\gamma<n-1-2 n \theta$;
2) $H_{x t}^{q, q / 2 n}\left(Q^{+}\right), q=2 n l+n-1-2 n \theta$, where $n-1-2 n \theta<\gamma<1$;
3) $H_{x}^{q-\varepsilon,(q-\varepsilon) / 2 n}\left(Q^{+}\right)$, if $\gamma=n-1-2 n \theta$, where ε is an arbitrarily small positive constant.

Remark 1 Under the conditions of the theorem for $\theta \leq \frac{1}{2}-\frac{1}{n}(n \geq 3)$, the problem (1)-(3) has a unique solution from the space $H_{x t}^{p, p / 2 n}\left(Q^{+}\right)$under the $2 n l$ conditions (8).

Remark 2 Under the conditions of the theorem, with $\theta \geq \frac{1}{2}-\frac{1}{2 n}$, in accord with [8], the problem (1)-(3) has a unique solution from the space $H_{x t}^{p, p / 2 n}\left(Q^{+}\right)$under $4 n l-2 l+2$ conditions of form (8).

PARABOLIC EQUATIONS OF THE FOURTH ORDER

Consider the equation (1) for $n=2$. Let the entries of A be real numbers $a_{i j}$ and

$$
A=\left(\begin{array}{cccc}
a_{11} & 0 & 0 & a_{14} \tag{9}\\
0 & -a_{22} & 0 & -a_{24} \\
0 & 0 & a_{33} & a_{34} \\
0 & 0 & 0 & -a_{44}
\end{array}\right)
$$

Note that in the case of the symmetric matrix A we are in the conditions of the article [2]. We assume that the entries $a_{i j}$ of the matrix A satisfy the uniqueness condition for solutions to the boundary value problems (1)-(3).

Introduce the notation $\theta=\frac{1}{\pi} \arctan \left|\frac{a}{b}\right|$, where $a=a_{33}$ and $b=a_{33}+\sqrt{2} a_{22}$.

Theorem 2 Assume that $a_{33}+\sqrt{2} a_{22} \neq 0, \varphi_{1}, \varphi_{2} \in H^{p}\left(\mathbb{R}^{+}\right)(p=4 l+\gamma)$, and $\theta \in\left(0 ; \frac{1}{4}\right)$. If $4 l$ conditions (8) are fulfilled then there exists a unique solution to the equation (1) satisfying (2), (3) from the space

1) $H_{x t}^{p, p / 4}\left(Q^{+}\right)$, if $0<\gamma<1-4 \theta$;
2) $H_{x t}^{q, q / 4}\left(Q^{+}\right), q=4 l+1-4 \theta$, if $1-4 \theta<\gamma<1$;
3) $H_{x}^{q-\varepsilon,(q-\varepsilon) / 4}\left(Q^{+}\right)$, if $\gamma=1-4 \theta$, where ε is an arbitrary small positive constant.

Proof. In view of general denseness results, $\alpha_{k}(t), \beta_{k}(t)(k=0,1)$ belongs to the space $H^{q}(0, T)\left(q=\frac{p-3}{4}\right)$ and

$$
\begin{equation*}
\alpha_{k}^{(s)}(0)=\beta_{k}^{(s)}(T)=0, \quad s=0, \ldots, l-1 \tag{10}
\end{equation*}
$$

The gluing conditions (3) generate the following system of integral equations with Abel's operators with respect to α_{k}, β_{k} :

$$
\left\{\begin{array}{l}
\frac{1}{4} \Gamma\left(\frac{1}{4}\right) \int_{0}^{t} \frac{\alpha_{0}(\tau)+\alpha_{1}(\tau)}{(t-\tau)^{\frac{1}{4}}} d \tau+\omega_{1}(0, t)=\frac{a_{11}}{4} \Gamma\left(\frac{1}{4}\right) \int_{t}^{T} \frac{\beta_{0}(\tau)+\beta_{1}(\tau)}{(\tau-t)^{\frac{1}{4}}} d \tau+a_{11} \omega_{2}(0, t)+a_{14}\left(\frac{\pi}{2} \beta_{0}(t)+\omega_{2 x x x}(0, t)\right) \tag{11}\\
-\frac{1}{2} \Gamma\left(\frac{1}{2}\right) \int_{0}^{t} \frac{\alpha_{1}(\tau)}{(t-\tau)^{\frac{1}{2}}} d \tau-\frac{a_{22}}{2} \Gamma\left(\frac{1}{2}\right) \int_{t}^{T} \frac{\beta_{1}(\tau)}{(\tau-t)^{\frac{1}{2}}} d \tau+\omega_{1 x}(0, t)+a_{22} \omega_{2 x}(0, t)+a_{24}\left(\frac{\pi}{2} \beta_{0}(t)+\omega_{2 x x x}(0, t)\right)=0 \\
-\frac{1}{4} \Gamma\left(\frac{3}{4}\right) \int_{0}^{t} \frac{\alpha_{0}(\tau)-\alpha_{1}(\tau)}{(t-\tau)^{\frac{3}{4}}} d \tau+\omega_{1 x x}(0, t)=-\frac{a_{33}}{4} \Gamma\left(\frac{3}{4}\right) \int_{t}^{T} \frac{\beta_{0}(\tau)-\beta_{1}(\tau)}{(\tau-t)^{\frac{3}{4}}} d \tau+a_{33} \omega_{2 x x}(0, t)+a_{34}\left(\frac{\pi}{2} \beta_{0}(t)+\omega_{2 x x x}(0, t)\right) \\
\frac{\pi}{2} \alpha_{0}(t)+\omega_{1 x x x}(0, t)+a_{44}\left(\frac{\pi}{2} \beta_{0}(t)+\omega_{2 x x x}(0, t)\right)=0
\end{array}\right.
$$

To prove the existence of solutions $\alpha_{k}(t), \beta_{k}(t)(k=0,1)$ to the system (11) from the space $H^{l-1+\frac{\gamma+1}{4}}(0, T)$ satisfying the conditions (5), the boundary value problem (1)-(3) is reduced to a system of singular integral equations of the normal type of the form

$$
\begin{equation*}
K \vec{\beta} \equiv P \vec{\beta}(t)+\frac{1}{\pi} \int_{0}^{T} \frac{N(t, \tau) \vec{\beta}(\tau)}{\tau-t} d \tau=\vec{Q}(t) \tag{12}
\end{equation*}
$$

where

$$
\begin{gathered}
\vec{\beta}(t)=\left(\tilde{\beta}_{0}^{(l-1)}(t), \tilde{\beta}_{1}^{(l-1)}(t)\right) \\
P=\left(\begin{array}{cc}
-a_{14} a_{24} a_{33} a_{34} & a_{14} a_{24} a_{33} a_{34} \\
a_{34} a_{44} & 0
\end{array}\right), \\
N(t, \tau)=\left(\begin{array}{cc}
a_{14} a_{24} a_{33} a_{34}\left(\frac{t}{\tau}\right)^{3 / 4} & a_{14} a_{24} a_{33} a_{34}\left(\frac{t}{\tau}\right)^{3 / 4}+\sqrt{2} a_{14} a_{22} a_{24} a_{34}\left(\frac{t}{\tau}\right)^{1 / 2} \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

It is possible to rewrite the system as follows:

$$
\left\{\begin{array}{l}
a_{33} \tilde{\beta}_{1}^{(l-1)}(t)+\frac{a_{33}+\sqrt{2} a_{22}}{\pi} \int_{0}^{T} \frac{\tilde{\beta}_{1}^{(l-1)}(\tau)}{\tau-t} d \tau+\frac{1}{\pi} \int_{0}^{T} M(t, \tau) \tilde{\beta}_{1}^{(l-1)}(\tau) d \tau=q_{1}(t) \tag{13}\\
a_{34} a_{44} \tilde{\beta}_{0}^{(l-1)}(t)=q_{2}(t)
\end{array}\right.
$$

Extract the characteristic part of the singular equation in system (13). We have

$$
\begin{equation*}
a \tilde{\beta}_{1}^{(l-1)}(t)+\frac{b}{\pi} \int_{0}^{T} \frac{\tilde{\beta}_{1}^{(l-1)}(\tau)}{\tau-t} d \tau=g(t) \tag{14}
\end{equation*}
$$

A solution of the singular integral equation (14) in the class of functions bounded at the ends of the interval ($0, T$) is sought using the piecewise-analytic function [7]

$$
\begin{equation*}
\Psi(z)=\frac{1}{2 \pi i} \int_{0}^{T} \frac{\tilde{\beta}_{1}^{(l-1)}(\tau)}{\tau-z} d \tau=\frac{\chi(z)}{2 \pi i} \int_{0}^{T} \frac{g(\tau) d \tau}{(a+b i) \chi^{+}(\tau)(\tau-z)} \tag{15}
\end{equation*}
$$

where the canonical function is equal to $\chi(z)=z^{\theta}(z-T)^{1-\theta}$ if a, b have the same sign, and $\chi(z)=z^{1-\theta}(z-T)^{\theta}$ if a, b are of different signs, $\theta=\frac{1}{\pi} \arctan \left|\frac{a}{b}\right|$. Since the index of the Riemann boundary value problem is equal to $x=-1$, the equality (15) is fulfilled under the condition

$$
\begin{equation*}
\int_{0}^{T} \frac{g(\tau)}{\chi(\tau)} d \tau=0 \tag{16}
\end{equation*}
$$

In this case, we have

$$
\begin{equation*}
\tilde{\beta}_{1}^{(l-1)}(t)=\Psi^{+}(t)-\Psi^{-}(t)=\frac{1}{2} g(t)+\frac{\chi(t)}{2 \pi} \int_{0}^{T} \frac{g(\tau) d \tau}{\chi(\tau)(\tau-t)} \tag{17}
\end{equation*}
$$

The formulas (16) can be treated as necessary and sufficient conditions of boundedness of $\tilde{\beta}_{1}^{(l-1)}(t)$ at $t=T$.
Substituting $g(t)$ in (17) and taking the first equation in (13) into account, we arrive at the collection of Fredholm equations

$$
\begin{equation*}
\vec{\beta}+k \vec{\beta}=\vec{Q}^{*} \tag{18}
\end{equation*}
$$

where

$$
k \vec{\beta}=\frac{1}{\pi} \int_{0}^{T} N(t, \tau) \vec{\beta}(\tau) d \tau
$$

Any bounded integrable solution to the system of Fredholm equations (18) belongs to a Hölder space at all points of the contour $(0, T)$ different from the ends. Properties of the kernel $N(t, \tau)$ and a constant term \vec{Q}^{*} imply that any bounded integrable solution to the system of Fredholm equations (18) at the ends $0, T$ behaves as $t^{\frac{1}{2}+\theta}(T-t)^{\frac{1}{2}-\theta}$ if a and b have the same sign, or as $t^{\frac{1}{2}-\theta}(T-t)^{\frac{1}{2}+\theta}$ if a and b are of different signs.

In view of the lemma about the membership of a Cauchy-type integral in a Hölder class at the ends of an integration contour [9], under the condition $\frac{1+\gamma}{4}<\frac{1}{2}-\theta\left(\theta<\frac{1}{4}\right)$ the solutions to the Fredholm equations (18) belong to space $H^{\frac{1+\gamma}{4}}(0, T)$ and vanish at $0, T$ with the order $\frac{1+\gamma}{4}$. Moreover, solutions to the Fredholm equations (18) satisfy the Hölder condition with the exponent $\frac{1}{2}-\theta$ for $1-4 \theta<\gamma<1$ and with the exponent $\frac{1}{2}-\theta-\varepsilon$ for $\gamma=1-4 \theta$.

Thus, the system of equations (18) is equivalent to the initial system of equations (11) under $4 l$ conditions of the form (8).

Solvability of the Fredholm system (18) follows from the uniqueness of solutions to the initial problem (1)-(3) and the uniqueness of their representations through potentials. Substitute the Taylor expansion

$$
\begin{align*}
& \vec{\beta}^{(s)}(t)=\sum_{k=s}^{l-2} \frac{\vec{\beta}^{(k)}(0)}{(k-s)!} t^{k-s}+\frac{1}{(l-2-s)!} \int_{0}^{t}(t-\tau)^{l-2-s} \vec{\beta}^{(l-1)}(\tau) d \tau, \tag{19}\\
& (s=0, \ldots, l-2)
\end{align*}
$$

into the conditions (8). We obtain $4 l$ solvability conditions of problem (1)-(3) in the space $H_{x t}^{p, p / 4}\left(Q^{+}\right)$, as was to be shown.
Remark 3 If the conditions of the theorem are fulfilled for $\theta \in\left[\frac{1}{4}, \frac{1}{2}\right)$ then the problem (1)-(3) has a unique solution in the space $H_{x t}^{p, p / 4}\left(Q^{+}\right)$under $6 l+2$ conditions of the form (8) [8].

ACKNOWLEDGMENTS

The research has been supported by the Ministry of Education and Science of the Russian Federation (Grant No. 1.6069.2017/8.9).

REFERENCES

[1] S. A. Tersenov, Parabolic Equations with a Changing Time Direction [in Russian] (Nauka, Novosibirsk, 1985).
[2] S. V. Popov, Dokl. Akad. Nauk 400:1, 29-31 (2005).
[3] S. V. Popov and S. V. Potapova, Dokl. Akad. Nauk 424:5, 594-596 (2009).
[4] S. V. Popov and A. G. Sinyavsky, Mat. Zametki YaGU 20:2, 138-151 (2013).
[5] L. Cattabriga, Rend. Sem. Mat. Univ. Padova 28:2, 176-401 (1958).
[6] S. V. Popov and S. V. Potapova, Mat. Zametki YaGU 18:1, 94-107 (2011).
[7] N. I. Muskhelishvili, Singular Integral Equations [in Rissian] (Nauka, Moscow, 1968).
[8] S. V. Popov, Sib. Math. J. Dep. VINITI No. 8646-B88 (07 December 1988).
[9] S. V. Popov, Mat. Zametki SVFU 23:2, 90-107 (2016).

