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Abstract. We prove the existence and uniqueness of solutions to inverse problems for third-order equations with the pointwise
overdetermination. The unknowns are a solution to the equation and two or three external sources.

INTRODUCTION

The problems of recovering coefficients of partial differential equations and systems with given additional information
about a solution are of great practical importance [1-3]. Note that the inverse problems for hyperbolic equations often
are regarded as ill-posed problems of mathematical physics whose theory was developed in articles by A. N. Tikhonov
[4-6], V. K. Ivanov [7], and M. M. Lavrent’ev [8,9].

The problems of recovering densities of external sources often arise in the theory of inverse problems of heat
and mass transfer [10-12]. It is often the case when the unknown right-hand side depends on time [13] and inverse
problems are posed as control problems [14]. The monographs [15, 16] are devoted to the study of inverse problems
for higher order parabolic equations. Observe that the spatially nonlocal direct problems for third order equations are
well studied (see, for instance, [17—19]) in contrast to the inverse problems for equations of this type. The unknown
parameter depending on time is examined in [20, 21] for parabolic equations and in [22-24] for hyperbolic.

In this article we establish the solvability of an inverse problem of recovering external sources together with
a solution for a third order equation in time with point overdetermination conditions; the densities of two or three
sources are recovered.

STATEMENTS OF INVERSE PROBLEMS
Let Q be the interval (0, 1) of the Ox-axis and Q the rectangle Q x (0, T) with 0 < T < +o0.

Problem 1 Find u(x, 1), q1(t), and q,(¢) satisfying the equation

U + Uy + (X, Du = f(x, 1) + q1(Dh(x, 1) + g2(Dha(x, 1) (H
in Q, the initial conditions
u(x,0) = u,(x,0) =u(x,T) =0, xe€Q, )
the boundary conditions
u(0,0=0, u(1,0=0, re(0,7), 3)

and the overdetermination conditions

u©,0=0, u(l,n=0, te(0,T). )
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Problem 2 Find u(x, 1), qi1(t), q2(t) and q5(¢) satisfying the equation
U + Uxx + (X, Du = f(x, 1) + (O (x, 1) + q2(Dho(x, 1) + g3(Dh3(x, 1) ®
in Q, the initial conditions (2), the boundary conditions (3), and the overdetermination conditions
w0,=0, wule,n)=0, wu(l,H=0, ae(0,1), te(,7). ©6)

In [22], the Fourier method is applied to study an inverse problem of recovering densities of sources in the one-
dimensional wave equation with constants coefficients. In work [25] the density of an external source is recovered in
the case of a single source.

SOLVABILITY OF BOUNDARY VALUE PROBLEM 1

Put:
A(D) = h(0,Dha(1, 1) — ha(0, DA (1, 1),

—_ h , h ’
it = M0 10,0101, = (1010, - 20

ao(t) = fi(0,0,  Bo(®) = fir(1,1),

“(m 0,0 f(L,0) = (1,0 f(0,0) + f(x,1),

1 1
ay (1) = m(hz(l,t)hu(O, 1) = m(1,0h(0,1),  ax(1) = R(M(O, Dh2(0,1) = hy(0, D)hy (0, 1)),

1 1
B1(0) = m(hz(l,t)hu(l,l) = hi(1,0)hy4(1,1), pa(t) = m(fu((), Dho x(1,1) — ho(0, )Ry (1, 1)),

1 1
a(-x9 t) = m(hZ(l’ t)hl(-xs t) - hl(ls t)hZ(x’ t))a ﬁ(-xs t) = m(hl(o’ t)hZ(-xs t) - hZ(O’ t)hl(ov t)'

Introduce the notation
hy = mgX(Iaxxl, 1Bxx])- @)

Denote by Vj = szz ,(Q) an anisotropic Sobolev space and by Wy, W, the vector spaces
Wo = {v(x,0) 1 v(x,0) € Vo, vian € L2(Q), Wi = {v(x,0) 1 v(x, 1) € Wo, vy € Wo}
endowed with the norms

Vllw, = IVllvy + [Vaxulls  IVIIwy = [Vl + 1Iallwg-

Before proving the solvability of Boundary Value Problem 1, we observe that for a function v(x,?) from Vj
satisfying (2), the following inequalities hold:

V2(0,0) +v3(1,1) < 6 f V2(x, £)dx + Cy(61) f V2(x, f)dx, (8)
0 0
T T T
f V2(x, f)dt < 6, f v2,(x, )dt + C5(6,T) f Vvi(x, t)dt, 9)
0 0 0
T T T
f va(x, dt < 63 f v2,(x, 0dt + C3(63,T) f V2 (x, t)dt, (10)
0 0 0

where 01, 05, and 3 are arbitrary positive numbers and C;, C5, and Cj are calculated through 81, 9, 3, and T'.
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Theorem 1 Assume that

c() € C'[0,T], —c(t)=co>0 for te[0,T],
hi(x,1) € C3(Q), h <5, Aa@#0, (11)
ar(t) + Br(t) <2 for te]0,T],

a1(NE + [-Bi(1) + (D] 162 = (D& =0 for 1€[0,T], (61,6) € R?, 12)

() + B0 < 3,
3+ 2a2(0B1(1) — a1 (DB2(1) = @i (1) + BH(t) + ah(t) + B3(1)  for t€[0,T],

f,t) € W5(Q),  frumn(x,1) € Ly(Q). (14)

Then there exists a regular solution to the problem (1)—(4) such that u(x,t) and u..(x,t) belong to Wi’it(Q) and
q1(1), q2(1) € L2(0, 7).

13)

Proof. Consider the auxiliary boundary value problem: find a solution u(x, ) to the equation

Uy + Uy + COU = i (0, 1) + Ay (x, D0, 1) + B (x, Hu(1, 1)] (15)
in Q such that the nonlocal conditions

uy(0,1) = a1(Ou(0, 1) + ar(Hu(l, ) + ap(), 0<t<T,

w,(1,8) = B (0, 1) + Bo(Du(1, 1) + Bot), 0 <i<T (16)

and the initial conditions
u(x,0) = u;(x,0) =u(x, T)=0, xeQ, 17

hold, where A is some real parameter defined below. Note that spatially nonlocal boundary value problems of the form

(15)—(17) for nonloided equation (15) are considered in [26, 27].
Given (x,1) € Q, put

2
y(x, 1) = %[ﬁo(f) —a)(O] + xap(0),  v(x, 1) = u(x, 1) = y(x,1).

In this case, instead of (15)—(17) we can consider the following boundary value problem: find a solution v(x, t) to the
equation
Vi + Vax + €OV = fo(x, 1) + A (6, )00, 1) + Brx(x, Hv(1,1)] (18)
in Q such that
vi(0,8) = a1(t)v(0,1) + ax(H)v(1,1), O0<t<T,
vie(1,0) = B1(v(0, 1) + Bo(t)v(1,8), O0<t<T,

v(x,0) =v(x,0)=v(x,T)=0, xeQ, (20)

19)

where

1) = frex, 1)+ Bo(x,0), Bo(x,1) = 3AB(x, 0)(@o(t) + Bo(®)) = Yur(x, 1) = Vs, 1) = c(D)Y(x, 1)
Without loss of generality, we can consider the homogeneous initial conditions (20) under the following assumptions:
fix(0,0) = f1u(0,0) = fix(0,7) = 0, fix(1,0) = fi(1,0) = fix(1,T) = 0.
Given (x,7) € 0, 1 € [0, 1], put
Y1546 = FBI) - i (0] + Axar (D), §1(x,1,2) = L [Ba(t) — aa(D)] + xe (1),

w(x, 1) = v(x, 1) — yi(x, ¢, Yv(0, 1) — 61(x, t, Yv(1, 1),

_ 01 (x,t,)y(1,1,2) _ 6i(xtA)
’)/ll(x»t’/l)_’yl(xata/l)'i-%’ 6ll(x,t’/l)_ m

v(x, 1) = wx, 1) + yi(x, t, Ow(0, 1) + 611 (x, 1, Yw(l, 7).
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Let v(x, r) be a solution to (18). In this case w(x, f) satisfies the equality
tht + Wxx + C(t)W = fz(xs t) + q)(x» tv /I,W(t)),

where

W(t) = (W[][(O, t)s tht(l, t)» W[[(O, t)s Wﬂ(l, t): W[(O, t)s Wt(19 t)’ W(O9 t)’ W(ls t)),
O(x,t, A, w(t)) = A1(x, t, Dwi (0, 1) + Ap(x, 1, Dwye (1, 1) + Az(x, 8, Dwi (0, 1) + Ag(x, t, Dwy (1, )+
+As(x, t, Ow,(0,1) + Ag(x, t, Dw,(1,1) + A7(x, t, Dw(0, 1) + Ag(x, t, Yw(1,1),
Al(x’ Z /l) = —711()5, Z, /l)’ A2(x’ Z /l) = _611()6’ z, /1)’ A3()C, Z, /l) = _3')/1“()6, 1, /1)’
A4(-x9 1, /l) = _3611 t(x5 1, /])7 As(x9 1, }-) = _3711 lt(-x? z, /l)’ A6(x’ f, /l) = _3611 tt(x’ 1, /l)a
A7(x, 1, ) = A = yiim(x, 1, 2) = Y110, 1, D) — c(Oyn(x, 1, 2),
Ag(x,1,2) = AB = 611 (X, 1, A) = 611 xx(x, 1, A) — ()61 (x, 1, ).

Consider the auxiliary boundary value problem: find a solution w(x, ) to the eqaution
Wit + Wee + c(Ow = fo(x, 1) + O(x, 1, 1, w(D)) 21

in the rectangle Q such that
WX(O’ t) = Wx(l’ t) = 07 te (0, T)’

w(x,0) = wi(x,0) =wx,T) =0, x € Q. (22)

Prove that this problem is solvable in Vj. To this end, we employ the methods of continuation in a parameter and
regularization.

Let € be a positive number; without loss of generality, we can assume that 0 < &£ < 1. Examine the new boundary
value problem: find a solution w(x;, f) to the equation

Lo(DW = Wi + Wy + c(OW — EWyr = (X, 1) + O(x, 1, A, W(?)) (23)

in Q such that (22) hold. Demonstrate that the boundary value problem (23), (22) for a fixed parameter £ > 0 is
solvable in W for every f>(x, ) € L,(Q) such that f>.(x, 1) € L,(Q).

In accord with the method of continuation in a parameter [28], for the boundary value problem (23), (22) to be
solvable in the space W) for all A € [0, 1] and every f(x, f) from W21”3‘ [(Q), it is sufficient to establish

1) the continuity of the family of operators {L.(1)} in 4;

2) solvability of the boundary value problem (23), (22) for 4 = 0;

3) an a priori estimate in W, uniform in A for solutions v(x, ) to (23), (22).

The continuity in A of the family {L.(1)} of operators is obvious. For 2 = 0 and a fixed number &, the boundary
value problem (23), (22) is solvable in W, (see [29]) under the conditions of Theorem 1. Justify an a priori estimate
in the space W; uniform in A for all solutions w(x, ) (23), (22).

Let w(x, 1) be a solution to (23), (22) from Wj. Put v(x, 1) = w(x,?) + y11(x, 1, Ow(0,1) + 611(x, t, Yw(1, ). The

inequality
T T 1 T 1
f V(0,0 +v*(1,0))dt <2 f f vi(x, Ddxdt + 4 f f V2 (x, H)dxdt
0 0 0 0 0

easily implies that v(x, ) belongs to W) too and is a solution to the boundary value problem

Lo(DY = vy + Vi + OV = &V = fo(x, 1) + Aa(x, DV(0, 1) + 4B, (x, Hv(1, 1), (24)
v(0,1) = a1 (Ov(0,1) + ar(t)v(1, )],  vi(1,1) = AB1OVO, 1) + Bo(Ov(1,1)], O0<t<T, (25)
v(x,0) =v,(x,0)=v(x,T)=0, xe€Q. (26)

Consider the equality

T 1 T 1
[ [ LeQyv - [=v + v (Ao — D dxdt = [ [Tf0x,1) + Aa(x, OV(0, 1) + ABon(x, V(L D[V + i) (Ao — 1) dxdt.
00 00

030005-4



Integrating by parts and accounting for the initial-boundary conditions (25), (26) on v(x, f), we arrive at the equality

C—=~

1 T 1 1
J1V2 = 1o — dxdt + 3 [ [ vZdxdt + % [ v2(x, T)(Ao — T) dx+
0 00 0

1

T 1 T
dxdt + 52 [ V2 (x, T)(Ao = T)dx + [ [ v2,(do - tydxdt + & [
0 00 0

= N

V2, (Ao — 1) dxdt+

T 1
3(1+£) ff v
0

+&l f [a1(0)v7, (0, 1) + (a2(2) = B1D)Wirr(0, Dvie(1, 1) = Bo(D)vy, (1, D](Ag — 1) di =
0

O%\lo%h‘

Ofl c()v (Ao — 1) dxdt+
+ed Of{[S,B”l Ovi(0,1) + 387 (1)v(0, ) + B (OV(O0, 1) + 385, (0)ve(1, 1) + 387 (v, (1, ) + B (O)v(1, H]ver (1, 1)~
—[3a} (v (0, 1) + 3] (Ov(0,1) + a)" (OO0, 1) + 35 (v (1, 1) + 325 (Ovi(1, 1) + ' (OV(L, )] (0, D)} (Ao — 1) dit+
+80fT{[(Vxnvt)(1, 1) = uv)(0,0](A0 = 1) + v (1, 1) = (Viv)(0, D)} di+
+ fT{[(vxv + V)1, 1) = (v + vy )0, )] (Ao — 1) + vivi(1, 1) — viyvi(0, 1)} di+

0
+ fol [H(x, 1) + Ay (x, V0, 1) + ABr(x, OV, D](—V + vy ) (Ao — 1) dxdt.
00

In view (11), (12) for A9 = 2T, the Young inequality and (8)—(10) yield

S~

1
J12 = c(m? dxdt+ffv dxdt+f 2(x,T)dx + (1 + &)
0

T 1
ffv,dxdt+fv (x, T)dx}
00

+
0

S—~

. i Tl i’
f Vg dxdt + sff Vi dxdt < 2T ff(vz +v2) dxdt + 61 fffzzdxdt+
’ ' 00 00

+2Thy | [ (20, 0) +vA(1, ) di + [ [ (v2+v$,,)dxdz],
0 00

hence
T 1

I T 1 1
f[ — c(H)v*]dxdt + ff vy dxdt + f 2(x, T)dx + (1 + &) {f f V2 dxdt + f v2,(x, T)dx| +
0 00 0

C—~

T

T 1 1 T 1
+ f f vigdxdi+& [ [ Vi, dxdt <2T6 [ [ +vi)dxdt+ L [ [ fdxdi+ (27)
00 00 00 00

T 1 T 1
+4Thy |6y [ [ vidxdt+C(6y) [ [ v* dxdt
00 00

T 1
+Thy [ [ (0 + V%) dxdt,
00
where 0, is an arbitrary positive number satisfying the inequality
1- 4Th151 > 0.

For a fixed §, and 8¢ =
that

4T, in view of the conditions of Theorem 1 (11) there exists a sufficiently large —cy > 0 such

—co —2T6g —4ThC(6y) — Thy > 0.
Therefore, (27) implies that
T 1 1 1 1
[ 1% = condxdt + [ [ v}dxdt+ [ v}(x,T)dx+ (1 +8)| [ [ Vidxdt+ [ vi(x,T)dx|+
00 0 0 0 (28)
+

Of
of‘

T 1 T
vidxdt +& [ [ V3, dxdt < M, [ [ f7dxdt
00 0

Cm NPy
S o
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where the constant M| is determined by ¢y, f(x, 1), hi(x, 1), and hy(x, ).
Consider the equality

T T 1
f Le(D)V - [=Viun + (x = %)me + Vax + Vildxdt = ffF [=Viar + (X = %)me + Vax + Virldxdl,
0

00
F = fo(x, 1) + A (x, OW(0, 1) + Brx(x, Hv(1, H)].
Integrating by parts, using the initial-boundary conditions (25), (26) for v(x, ¢), we obtain the equality
T 1 T 1 1
1+ %)ff dxdt + ff[vxx + lvtztt]d)cdt+ fvxt(x T)dx+8ff Vi dxdt + IT f m(x, T)dx+
00

0
T

+ [{IA + &)1 (1) + § — %3 0) + BHNIVE0, 1) + [A(1 + £)(aa(t) — B1(D) — Sl (Daa(t)+
0
+HB1 (DB Vs (0, Vi (1,0) + [ = A1 + £)Ba(t) — 38A(a5(0) + B3(D)Ivg, (1, D))drt =
T
=2 [y [z Ch@P P v®(0,1) + S P vO (1, )P + » CEB O (@00, 1) + BSP e ® (1, 1)1} dr+
0 k=0

a
T 1
+ [ [l=c@vivan — (X = HVixvin — (X = DOy — cOWar = OV + F vy + (X = $)F Vi + Fyy+
00
r -
+Fvi)dxdt — A1 + &) [{3 CAl@ ™ ()v®(0, 1) + a5 (v ® (1, ))vu(0, 1) — (8770 (100, )+
0 k=0

T
BEP WO, D)W (1, DTNt + [Te@VL, D1, 1) = OO, (0, 1) = 2v,4(0, 1) 0, D)+
20 (1, (1) + F(O, 0030, 1) ~ F (1. 11, )

Using (11)—(13), replacing v.(0, t), vy, (1, £) from (25) and estimating the summands on the right-hand side with
the help of Young inequality, (8) and (28), we obtain the a priori estimate

T 1 T 1 1
1+e) ff V2, dxdt + ff[vjzcx + 2, Jdxdt + fvil(x, T)dx+
00 00 0 (29)
T 1 1 T 1
+e [ [Viggdxdt+(1+e) [vi, (. T)dx <M, [ [[f + f3]dxdt
00 0 00

with the constant M, defined by ¢y, f(x,1), hi(x,t), and hy(x, 1).
Consider the equality

T T 1
[ Loy, - vieedxdt = [ [ [for(x, 1) + Aue(x, OV(0, 1) + A (x, OV(1, D] - Vinx dxdlt.
0 00
Integrating by parts and using the Young inequality, (28), (29), and the initial conditions (26) for v(x, t), we arrive at
the equality
T 1 T 1
[ [ V3, dxdt+e f V2o, T)dxdt < Ms [ [ f3 dxdt (30)
0 00

with the constant M3 determined by co, f(x, 1), hi(x, ), and hy(x, 1).
Estimates (28)—(30) and equation (24) yield the estimate

Vllw, < Mo

uniform in A.

These estimates allows us to apply the method of continuation in a parameter. Hence, under the conditions of
the theorem, the boundary value problem (24)—(26) has a solution v(x, t) = v.(x, t) from W for all values A including
A = 1. Demonstrate that the family of solutions {v.(x, 7)} satisfies an a priori estimate uniform in € which allows us to
pass to the limit as € — 0.
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The solutions {v.(x,7)} to (24)-(26) satisfy (28)—(30). Choose a sequence {g,} such that ¢, > 0, &, — 0O
as n — oo. By the theorem on weak closedness of a bounded set in L,(Q), there exists a sequence {v,,(x, 1)}
and function v(x,f) such that v,(x,5) — v(x,7) weaklyin W;? (Q), vms(x.1) — vy(x,1) weaklyin W, (Q),
EmWmxun(X,1) — 0 weakly in Ly(Q) as m — oo. It is obvious that the limit function v(x, ) satisfies (18). Put
w(x,t) = v(x,t) — y1(x, t, Dv(0,1) — 01(x, t, )v(1, 1), then the function w(x, ¢) belongs to Vj and it is a solution to
(18)—(20).

It remains to show that a solution u(x, 7), qi(¢), g2(¢) to the boundary value problem (1)—(4) is determined by
v(x, ). Indeed,

U (X, 1) = v(x, 1),  ux(0,2) = u,(1,£) = 0.
The function u(x, f) can be determined from these equalities. Let
WX, 1) = Uy + Uyy + (U — ﬁ(x, 1) — a(x, H)v(0,1) — B(x, Hv(l, 1).
In this case (15)—(17) imply that w(x, ¢) satisfies the equalities
Wi(X,8) =0, wy(0,0) =w,(1,1) =0

and so w(x,t) =0 forall t € [0, T].
Thus, u(x, t) is a solution to the equation

Ugy + Uy + (DU — ﬁ(x, 1) — a(x, Hv(0, 1) — B(x, Hv(1, 1). 3D
Taking x = 0 and x = 1 in (31), we conclude that
(0, 1) + 11, (0, 1) + c(t)u(0, 1) — £,(0,1) — a(0, ))w(0, 1) — BO, (1, 1), (32)
(1, 1) + ux (1, 1) + c(Hu(l, 1) - ﬁ(l, 1) —a(l,H)v(0,1) — B(1,Hv(l, 1). 33)
The boundary value problems

uy(0,0) + c(®u(0,n) =0, u(0,0) = u,(0,0) =u(0,T) =0,
(1, 0) + c@u(l,0) =0, u(1,0)=u,(1,0)=u(1,T)=0
have only zero solutions; i.e., (0, ¢) = 0 and u(1,7) = 0.

Taking the conditions u(0,f) = 0, u(1,#) = 0 and (32), (33) into account, we derive that u,,(0,#) = v(0,1),
un(1,1) = v(1,1), i.e., u(x, t) meets (2)-(4). Hence, our function u(x, ) and

1
(1) = m[hz(l, D(ux(0,1) = £(0, 1)) = ha(0, )(urc(1, 1) = f(1,1))],
1
q(1) = m[hn 0, )(uxx(1,0) = f(1,0) = Iy (1, H(uxx(0, 1) = £(0,0)]
belongs to the required classes, satisfies (1), and defines a solution to Inverse Boundary Value Problem 1. O

SOLVABILITY OF BOUNDARY VALUE PROBLEM 2

For (x, 1) € Q introduce the notations

h(0,8)  hy(0,8)  h3(0,1)
At =| hi(a,t) ho(a,t) hy(a,t) |, A@) =det]A@)],
(1,0 h(l,0)  hs(1,0)

~ 1
filx, ) = Y0 [1(x, 1) - A1(D) + ha(x, 1) - 22(8) + ha(x, 1) - A3(D] + f(x, 1),
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S A= S50 sy = 850
ao(®) = 0,0, o) = fix(1,1),
a1(t) = ax(0,1),  ax(®) =B(0,1), a3(t) =6.(0,0),
Bi®) = ax(1,0),  Ba(1) = Bx(1,0),  B3(1) = 6.(1,0),
where A;(f) are determinants obtained from the determinant A(f) replacing the i-th column with the column vector

?(l) = (f(0, ), f(a, 1), f(1,1)) and Al(x, t) are determinants obtained from the determinant A(¢) replacing the i-th row

with the row vector ?](x, 1) = (hi(x, 1), ha(x, 1), h3(x, 1)).
We assume that one of the following three conditions hold:

alx, 1) =

i

pi) +pa(t) <1, p3()—4pi(1) <0, or
pi@®)+p0) <1, pi(H)<0, or (34)
pl(t) = 0, pz(l‘) <1,
where

pi(0) = la(l = )(B3(Dar(t) = Br(Daz ()], pa() = J[a*(@a(r) = Ba(0)) + 20 (t) = B3(1) = 3(1)]. (33)

Introduce the notations

1
=3 - (@2 + B2 + 403 + 4B3) - 2(a1aa + B1B2) — 16(a1as + B1B2)°,

1
9 =7 - (@3 + B3 + 403 + 4B2) — 2aras + Bafs) — 16(aaas + Bofn),

qi2 = —(a; + B + 2B1Bs + 2a1a3),
h2 = maaxqa'xxl’ Iﬂxxl’ |6xx|)

Theorem 2 Assume that the condition (34) holds,
c(r) € C'[0, 71, —c(t)=co>0 for te[0,T],
hi(x’ t) € CS(Q)? hZ < %7 A(t) * 07

[1(0) + €2(0) = 4030|1E} + [-B1(0) + a3 (D] £162 — [B3(1) + Balt) + 4B2(0)] & 2 0, 36)
qné +qnéiér+qnés >0 for 1€[0,T], (61,6€)€R?,
[ WD), fuu(x, 1) € La(Q).

Then there exists a regular solution to the problem (5), (2), (3), (6) such that u(x,t), u.(x, 1) belong to Wi’it(Q) and
q(1) € Lr(0,T) (k= 1,2,3).

Proof. Consider the auxiliary boundary value problem: find a solution u(x, ) to the equation
g + Uy + €OU = (X, 1) + A6, D0, 1) + Br(x, Duar, 1) + 8. (x, (1, 1)]
in Q such that

uy(0,1) = a1 (Hu(0, 1) + ar(Hu(a, t) + az(Hu(l, 1) + ap(t), 0<t<T,
u (1,0 = 1(Ou(0, 1) + Bo(Du(a, 1) + B3(Du(1, 1) + o), 0<t<T

and

u(x,0) = u,(x,0) =u(x, T) =0, xeQ.
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As in Section 3, instead of (15)—(17) we consider the boundary value problem of finding a solution v(x, t) to the
equation

Virr + Vax + €OV = fo(x, 1) + A (6, OV(0, 1) + Bux(x, D@, 1) + 6x(x, V(1 1)]
in Q such that

(0,0 = a1 (O)v(0, 1) + ar(H)v(a, 1) + as(t)v(l, 1), 0<t<T,
vi(1,1) = B1(OV(0, 1) + Br(D)v(a, 1) + B3 (t)v(1,1), 0<t<T,

v(x,0) =v,(x,0) =v(x,T) =0, x€eQ, (37)
where
f2(x7 t) = Exx(x, t) + BO(x, t)’ BO(X, t) = /l[ﬂxx(xa t)y(aa t) + 5xx(xa t)?’(l, t)] - 7tlt(x7 t) - )’xx(x, t) - C(t)y(x5 t)

As before, without loss of generality we can consider the homogeneous initial conditions (37), assuming
£ix(0,0) = fi(0,0) = fi(0,T) =0, fix(1,0) = fiu(1,0) = fir(1,T) = 0.
For (x,1) € é and 4 € [0, 1] we put

N@ LD = BIBO = @] + xer(), S1(x. 1) = B [Ba(0) = aa()] + Axaa(0),
a(x,1,2) = B [B3(1) — a3 ()] + Axas (1),
w(x, t) = v(x, t) —yi(x, t, Yv(0, 1) — o1 (x, t, Dv(a, t) — €1(x, t, Dv(1,1),
v(x, 1) = w(x, t) + y11(x, £, YOw(0, 1) + 611 (x, 1, Yw(a, 1) + €1 (x, ¢, HYw(l, 1),
yuux, t, ) = yi(x, t, Y (@) + 61(x, ¢, Dear (t) + e1(x, t, Desi(2),
o11(x, 1, ) = 01(x, 1, Ve (D) + €1(x, 1, Dex(®),  en1(x, 1, A) = 61(x, £, Ve (f) + €1(x, 1, ez (?),

where ¢;;(?) are the entries of the inverse matrix C~'(#) which is determined from the system of equations
COV =W, 7 =m0,n,va,n,v1,1), W=w0O,1,wa,t1),wl,1).

We have

1 0 0
COH=| n@ed) 1-6(a.td) -ea@td) |, AC)=det|CO|=Lpi(t)+Apa(0) + 1,
‘71(1»1"/1) _61(17t»/l) 1 - El(l’ta/l)

where pi(f), p2(t) are given by (35). Notice that the determinant A(C) # 0 when any of the three conditions (34) holds.
Let v(x, r) be a solution to (18). In this case w(x, ¢) satisfies the equation

Wit + Wex + c(Ow = fo(x, 1) + O(x, 1, 1, w(1)),

where

w_(t) = (W)ttt’w)lhw)tvw) = (Wl(t)7 WZ(t)’ DR le(t))7
A(x,1,0) = (A1(x,1,2), Aa(x, 1, D), . .., Apa(x, 1, D),
D(x, 1, L, W(t)) = (A(x, 1, 1), W(?)) = f Ai(x, 1, Dwi(D),

i=1

Ai(x,t, ) = Y11 (x,1,0), Ay(x,t,A) = =011(x,t, ), Az(x,t,A) = —€11(x, 1, ),
Ag(x, t, ) = 3By11(x, t, 1), As(x,t,) = =3011:(x,1, 1), Ag(x,t, ) = =3€11,(x,t, ),
A7(-x’ t, /l) = _3611 tt(-xs ts /1)’ AS(-xs t? /l) = _3611 tt(x’ t’ /1)9 A9(x’ t’ /l) = _3611 tf(-x’ t, /l)s
Aro(x, 1, ) = A = Y11(x 1, ) = Y11(X, 1, ) — c(Dy1(x, 1, D),

Ap(x, 1, ) = ABax = O1101(X, £, ) = 011 22(X, 1, ) — c(D)011(%, 1, D),
AIZ(X’ t, /l) = /16xx — €11 ttt(-x3 t, /l) — €11 xx(x’ t, /l) - C(I)Ell(.x, t, /l)

Consider the auxiliary boundary value problem: find a solution w(x, ) to the equation

Wi + Wy + c(OW = fo(x, 1) + D(x, 1, 1, w(t))
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in Q such that

WX(O? [) = Wx(19t) = 05 te (09 T)9
w(x,0) = wi(x,0) = w(x,T) =0, x € Q.

As in Section 3, this problem is solvable in V. To justify this, we utilize the methods of regularization and
continuation in a parameter. The function v(x, 7) thus constructed allows us to define a solution u(x, t), g (t) (k = 1,2,3)
to the boundary value problem (5), (2), (3), (6). m|

CONCLUSIONS

1. Conditions (11) are some smallness conditions for Inverse Boundary Value Problem 1. Obviously, the set of data
f(x, 1), hi(x, 1), and hy(x, 1) satisfying this condition is not empty. Similarly, the smallness conditions (34) for the
Inverse Problem 2 also make some sense.

2. Note that the fulfillment of (13) implies the nonnegative definiteness of the quadratic form

|4 = 3) - B0 & = 211 Dea®) + B OBADNE + [§ - a3 - B3] & 2 0

fort € [0, T], (£1,&:) € R?. Conditions (36) are also sufficient and they can be refined.

3. We can consider the inverse problem of finding together with a solution to the equation (1) the unknown
coeflicients q;(¢), q2(?), ..., gn(f) with pointwise overdetermination. In the study of the (2s + 1)-th order equations
in the time variable of the form (1) with the pointwise overdetermination the situation does not change, but the
calculations will increase substantially.
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