TITLE OF YOUR TALK

LastName1 F1. P1. ${ }^{1,2}$, LastName2 F2. P2. ${ }^{2}$, LastName3 F3. P3. ${ }^{3}$

${ }^{1}$ The full name of organization, City, Country; e-mail1@address1
${ }^{2}$ The full name of organization, City, Country; e-mail2@address2
${ }^{3}$ The full name of organization, City, Country; e-mail3@address3

When preparing abstracts of reports for the conference "2D systems of the strong correlated electrons: from fundamental research to practical applications", we ask you to follow some simple rules. The volume of the abstract of your report (together with the title) should not exceed one page of the A4 format. We ask you to provide the abstracts of reports in the format .tex. All formulas must be typed in a mathematical mode. In the text, you need to number only those formulas (1), to which you refer:

$$
\begin{equation*}
\frac{d \mathbf{X}(t)}{d t}=\mathbf{F}(\mathbf{X}, \mathbf{U}, \mathbf{B}, t), \quad \mathbf{X}\left(t_{0}\right)=\mathbf{X}_{0} \in \mathrm{M}_{0} \tag{1}
\end{equation*}
$$

We ask you: do not include figures and graphs in the abstracts of the reports.

If the text contains physical quantities, specify them with decimal points and negative exponents: $25.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{mp} / \mathrm{bp} 20^{\circ} \mathrm{C} ;[\alpha] \mathrm{D} 20=-13.5$ ($c=0.2$, acetone) (please, also specify units for $[\alpha]$ and c, the exponent: $\mathrm{cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}$ and cm^{-3}); 1 H NMR (400 MHz , DMSO- d_{6}, δ): $7.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 1.3\left(\mathrm{q}, J=8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 0.9(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H} ;$ $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $175.4(\mathrm{C}=\mathrm{O})$, $156.5(\mathrm{C} 4) ; \mathrm{IR}(\mathrm{KBr}):$ $\nu=2972(\mathrm{w}), 2907(\mathrm{w}), \ldots, 1026\left(\mathrm{~s} ; \nu_{\mathrm{as}}(\operatorname{SiOSi})\right), 971\left(\nu_{\mathrm{s}}\right), \ldots, 666(\mathrm{w} ;$ $\left.\nu_{\mathrm{s}}(\operatorname{SiOSi})\right), \ldots, 439(\mathrm{~m}), 401 \mathrm{~cm}^{-1}(\mathrm{~m})$; UV-vis $\left(n\right.$-hexane): $\lambda_{\max }(\varepsilon)=$ 320 (5000), 270 nm (12000); EIMS m/z (\%): 108 (20) [$\left.\mathrm{M}^{+}\right]$, 107 (60) [M^{+} $-\mathrm{H}], 91$ (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right]$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$a calculation for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}, 475.2591$; a result, 475.2593. The analytical calculation for $\mathrm{C}_{45} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7}$: C 62.47, H 3.41, N 6.78; the result: C 62.27, H 3.46, N 6.80. REFERENCES

1. LastName1 F1. P1. A book name. City: Publisher, year.
2. LastName1 F1. P1., LastName2 F2. P2. The article name in a journal. The journal name. Year. V. 6, No 10. Pp. 6-10.
3. LastName1 F1. P1., LastName2 F2. P2., LastName3 F3. P3. The article name in a collection. The collection name. City: Publisher, year. Pp. 6-10.
