
mathematics

Article

An Accurate Approximation of the Two-Phase Stefan
Problem with Coefficient Smoothing

Vasily Vasil’ev 1,† and Maria Vasilyeva 1,2,*,†

1 Multiscale model reduction Laboratory, North-Eastern Federal University, 677007 Yakutsk, Russia;
vasvasil@mail.ru

2 Institute for Scientific Computation, Texas A&M University, College Station, TX 78801, USA
* Correspondence: vasilyevadotmdotv@gmail.com
† These authors contributed equally to this work.

Received: 19 October 2020; Accepted: 28 October 2020; Published: 2 November 2020
����������
�������

Abstract: In this work, we consider the heat transfer problems with phase change. The mathematical
model is described through a two-phase Stefan problem and defined in the whole domain that
contains frozen and thawed subdomains. For the numerical solution of the problem, we present
three schemes based on different smoothing of the sharp phase change interface. We propose the
method using smooth coefficient approximation based on the analytical smoothing of discontinuous
coefficients through an error function with a given smoothing interval. The second method is based
on smoothing in one spatial interval (cell) and provides a minimal length of smoothing calculated
automatically for the given values of temperatures on the mesh. The third scheme is a convenient
scheme using a linear approximation of the coefficient on the smoothing interval. The results
of the numerical computations on a model problem with an exact solution are presented for the
one-dimensional formulation. The extension of the method is presented for the solution of the
two-dimensional problem with numerical results.

Keywords: heat transfer; Stefan problem; phase change; numerical method; coefficient smoothing;
finite element method

1. Introduction

One of the urgent problems of mathematical physics is the Stefan problem, which describes heat
transfer with a phase change of matter. An example of physical processes with phase transitions is the
problem of melting ice with a movable boundary between water and ice, the problem of melting a solid
with an unknown boundary between the solid and liquid phases, and the heat transfer processes in
permafrost areas. The Stefan problem is an initial-boundary value problem of a parabolic differential
equation with discontinuous coefficients on the phase change interfaces. The phase change occurs for
a given value of temperature (freezing point), where the energy balance on the interface is written in
the form of the Stefan condition and represented as a sharp interface (a moving-boundary problem).

In the numerical solution of the Stefan problem, a major difficulty is associated with the
tracking of the phase change interface evolution. The enthalpy method was presented in [1–4],
where the concept of effective heat capacity was introduced through various methods of smoothing
of discontinuous coefficients. The general approach of thermodynamic functions was presented
in [5], where an online application was implemented to generate the first-order derivatives of the
thermodynamic parameters for a closed system. The substantiation of the correctness and numerical
methods for solving various topical applied problems of the Stefan type were summarized in the
review paper [6] and the monographs [7–9]. The relaxed linearization methods for the solution of
the heat transfer problem using finite element approximation were presented in [4]. An efficient
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enthalpy-based numerical approach with a trust region minimization algorithm was introduced in [10]
with various smoothing functions. In [11], the mathematical model with the separate evolution of the
phase change interface from the heat equation was presented with XFEMapproximation.

In this work, we consider an enthalpy method with different types of smoothing functions.
We propose a smooth coefficient approximation-based on the analytical smoothing of discontinuous
coefficients using the error function with a given smoothing interval. We study a grid and time step
convergence to examine the accuracy of the method for different lengths of smoothing intervals and
compared to the regular linear smoothing. The novel method with smoothing in one spatial interval
is proposed. The method provides a minimal length of smoothing that is calculated automatically
for the given temperature values on the mesh. We start with the presentation of the methods for the
one-dimensional formulation of the heat equation and perform convergence studies against the grid
and time-step sizes, where we calculate the errors between analytical and numerical solutions using
the proposed smoothing methods. Then, we generalize the methods for finite element approximations
and present the results for two-dimensional model problems. Triangular elements are used, but the
formulation can be extended for any type of element.

The paper is organized as follows. In Section 2, we describe the problem formulation. In Section 3,
we consider the problem in the one-dimensional domain and present a finite difference approximation.
In order to construct an approximation, we present three schemes with different smoothing of
discontinuous coefficients, which reduces the Stefan problem to a quasilinear problem for a parabolic
equation with smooth coefficients. The generalization of the presented schemes is given in Section 4,
where we present the finite element approximation for one- and two-dimensional problems. Numerical
results for the model problem are presented in Section 5 for one- and two-dimensional formulations,
where we investigate the accuracy of the proposed schemes with different types of smoothing.
For the one-dimensional problem, we compare the numerical results with the exact solution. A result
of the two-dimensional problem is presented for two geometries. The paper ends with the Conclusion.

2. Stefan Problem

We consider the two-phase Stefan problem in the domain Ω. Let u(x, t) be an unknown function
(temperature) and u∗ be a phase change temperature that occurs on the phase change interface ξ:

ξ = {x ∈ Ω, u(x, t) = u∗}, Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ξ

where Ω1 is a frozen zone and Ω2 is a thawed zone:

Ω1(t) = {x ∈ Ω, u(x, t) < u∗}, Ω2(t) = {x ∈ Ω, u(x, t) > u∗}.

We have conductive heat transfer in Ω1 and Ω2:

c1
∂u1

∂t
−∇ · (k1∇u1) = 0, x ∈ Ω1, t ∈ (0, T],

c2
∂u2

∂t
−∇ · (k2∇u2) = 0, x ∈ Ω2, t ∈ (0, T].

(1)

On the phase change interface ξ, we have a continuous temperature and the jump of the heat flux,
which is associated with the latent heat of fusion for water [1,2]:

u1 = u2 = u∗, x ∈ ξ,

(k1∇u1 − k2∇u2,∇ξ) = D
dξ

dt
, x ∈ ξ.

(2)
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We write the system of Equations (1) and (2) as the two-phase Stefan problem in domain Ω:

(c(u) + Dδ(u− u∗))
∂u
∂t
−∇ · (k(u)∇u) = 0, x ∈ Ω, t ∈ (0, T], (3)

where δ is the Dirac delta function:

δ(u− u∗) =
dη(u− u∗)

du
, η(u− u∗) =

{
1, u ≥ u∗,
0, u < u∗,

and:

c(u) =

{
c1(u), u < u∗,
c2(u), u > u∗,

k(u) =

{
k1(u), u < u∗,
k2(u), u > qu∗.

The coefficients of the equation depend on the function u(x, t) and have a discontinuity of the
first kind at u(x, t) = u∗.

The main difficulty in the presented problem is associated with dynamic tracking of the
phase change interface. Since the δ coefficient of Equation (3) at u(x, t) = u∗ becomes infinity,
a numerical solution of this equation is possible after smoothing the function η [1,2,10]. Let the
phase change not occur instantaneously, but take place in a small temperature range (slushy zone).
The discontinuous coefficients η of Equation (3) are replaced by bounded continuous (smooth)
functions of temperature η̃(u):

(
c̃(u) + Dδ̃(u− u∗)

) ∂u
∂t
−∇ ·

(
k̃(u)∇u

)
= 0, x ∈ Ω, t ∈ (0, T], (4)

where:

c̃(u) = c1 + η̃(u)(c2 − c1), k̃(u) = k1 + η̃(u)(k2 − k1), δ̃ =
dη̃(u)

du
.

The resulting Equation (4) is a quasilinear parabolic equation with positive, bounded, continuous
(smooth) coefficients, which depends on the coefficient smoothing procedure.

We have the following initial condition:

u(x, 0) = u0(x), x ∈ Ω, (5)

and boundary conditions:

u = g(t), x ∈ Γ1, t ∈ (0, T],

−k̃(u)
∂u
∂n

= 0, x ∈ Γ2, t ∈ (0, T],
(6)

where Γ1 ∪ Γ2 = ∂Ω.
Next, we present two novel approaches to the accurate approximation of the Stefan problem

and consider a convenient approach with a linear approximation of the η function. First, we define
a smooth approximation of coefficients using the error function and linear approximation. Then,
we present a novel approach with smoothing in one spatial interval that provides a very accurate
approximation of the problem and does not depend on the interval of a slushy zone, which is hard to
define because it depends on the speed of phase change interface propagation and can vary in space
and time.

3. Approximation of the One-Dimensional Problem

Let Ω be the one-dimensional computational domain (Ω = [0, L]) and Th be the uniform mesh:

Th = {xi = ih, i = 0, 1, . . . , N; h = L/N},
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where h is the mesh size. For the time approximation, we use an implicit scheme with linearization
from the previous time layer, where tm = mτ for m = 0, 1, . . . , M and τ = T/M is the time step size.

We have the following finite difference approximation of the problem (4)–(6) with smooth
coefficients on the grid Th:

(
c̃m−1

i + Dδ̃m−1
i

) um
i − um−1

i
τ

h + qm
i+0.5 − qm

i−0.5 = 0, m = 1, 2, . . . , M, (7)

where:

qm
i+0.5 = −k̃m−1

i+0.5
um

i+1 − um
i

h
, (8)

for i = 1, . . . , N.
We consider the approximation (7) with the following initial conditions:

u0
i = u0(xi), i = 0, . . . , N. (9)

Let Γ1 and Γ2 be the left and right boundaries, x = 0 and x = L. For the Dirichlet boundary
condition on x = 0, we have:

um
i = g(tm), i = 0. (10)

For the Neumann boundary condition on x = L, we have:

qm
i+0.5 = 0, i = N, (11)

for m = 1, 2, . . . , M.

3.1. Smoothing on the ∆ Interval

Let [u∗ − ∆, u∗ + ∆] be the smoothing interval (slushy zone). For the coefficients of Equations (7)
and (8), we have:

k̃m
i+0.5 =

2
(k̃m

i+1)
−1 + (k̃m

i )
−1

, k̃m
i = k1 + η̃m

i (k2 − k1),

c̃m
i = c1 + η̃m

i (c2 − c1), δ̃m
i =

dη̃m
i

dum
i

.
(12)

Note that, in this approximation, coefficients c̃m
i , k̃m

i are defined on the mesh nodes, and k̃m
i+0.5 is

defined on the cell as the harmonic average of the values on nodes xi+1 and xi.
In schemes with smoothing on the ∆ interval, the coefficients η̃ and δ̃ are defined in each node of

the mesh and calculated using the given value of function ui on current node xi:

η̃m
i = η̃(um

i ), δ̃m
i = δ̃(um

i ).

We consider the following smoothing of discontinuous coefficients and define smooth functions η̃

as follows:

• Smoothing on the ∆ interval using the error function:

η̃(u) =
1
2

(
1 + erf

(
u− u∗√

2∆

))
, δ̃(u) =

1√
2π∆

exp
(
− (u− u∗)2

2∆2

)
. (13)
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• Linear smoothing in the ∆ interval:

η̃(u) =


1, u ≥ u∗ + ∆,

(u−u∗+∆)
2∆ , u∗ − ∆ < u < u∗ + ∆,
0, u ≤ u∗ − ∆,

δ̃(u) =


0, u ≥ u∗ + ∆,
1

2∆ , u∗ − ∆ < u < u∗ + ∆,
0, u ≤ u∗ − ∆.

(14)

We note that the accuracy of the presented schemes depends on the choice of the ∆ parameter.
If we choose a very large ∆ interval, we overestimate the slushy zone interval and obtain large errors.
In general, the parameter ∆ should depend on the spatial and time meshes in approximation as the
parameter highly depends on the speed of the freezing front propagation. Other methods of such
procedures were proposed in [10], where exponential- or sinusoidal-based functions can be used to
smooth function η̃ on the ∆ interval. In [1,2], the authors presented smoothing using polynomials of
a given degree.

3.2. Smoothing in One Spatial Interval

In order to construct a scheme without the estimation of the smoothing interval parameter ∆,
we present a novel method to an accurate approximation of the two-phase Stefan problem by choosing
the minimal possible interval of the slushy zone for the current mesh.

Let a phase change occur on one spatial interval [xi, xi+1] if (ui − u∗) · (ui+1 − u∗) < 0. In this
scheme, η̃ and δ̃ are defined on cell [xi, xi+1] and approximated using values of the functions ui and
ui+1. For the coefficients of Equations (7) and (8), we have:

k̃m
i+0.5 = k1 + η̃m

i+0.5(k2 − k1), c̃m
i =

{
c1, um

i < u∗,

c2, um
i ≥ u∗,

, δ̃m
i = δ̃m

i−0.5 + δ̃m
i+0.5, (15)

where coefficient c̃m
i is defined on each node xi and coefficients η̃m

i+0.5 and δ̃m
i+0.5 are calculated taking

into account the presence or absence of the phase change interface in the temperature interval [ui, ui+1].
For the accurate approximation of the two-phase Stefan problem, we present a smoothing in one

spatial interval:

η̃i+0.5 =


1, ui ≥ u∗ and ui+1 ≥ u∗,

(ui+1 − u∗)/(ui+1 − ui), ui < u∗ and ui+1 > u∗,

(ui − u∗)/(ui − ui+1), ui > u∗ and ui+1 < u∗,

0, ui < u∗ and ui+1 < u∗,

, (16)

δ̃i+0.5 =


0, ui ≥ u∗ and ui+1 ≥ u∗,

(ui+1 − u∗)/(ui+1 − ui)
2, ui < u∗ and ui+1 > u∗,

−(ui+1 − u∗)/(ui − ui+1)
2, ui > u∗ and ui+1 < u∗,

0, ui < u∗ and ui+1 < u∗.

(17)

At the calculation of the phase change interface position, we use a linear interpolation of the
desired function within the indicated temperature interval. Further, we determine the value of the
corresponding coefficient for the difference equation.

4. Generalization of Methods for Finite Element Approximation

In this section, we generalize the presented algorithm for the solution of the two-dimensional
problems on unstructured meshes [12]. We use a finite element method and set:

V = {v ∈ H(Ω) : v = g1 on Γ1}, V′ = {v ∈ H(Ω) : v = 0 on Γ1}.
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For the heat problem (4)–(6), we have the following variational formulation of the problem:
find um ∈ V such that:

s(um − um−1, v) + a(um, v) = 0, ∀v ∈ V′, (18)

where:
s(um, v) =

1
τ

∫
Ω

(
c̃m−1 + Dδ̃m−1

)
um v dx, a(um, v) =

∫
Ω

k̃m−1∇um · ∇v dx.

Let Th be the mesh for the domain Ω:

Th = ∪iKi, i = 1, . . . Nc,

where Nc is the number of grid cells.
We replace the space V by a finite dimensional subspace Vh, Vh ⊂ V. We suppose that space Vh is

composed of piecewise linear basis functions φi on the grid cell, i = 1, . . . N and N = dim(Vh) is the
number of nodes (vertices) for linear basis functions. We have the following decomposition of uh in
the basis of Vh:

uh(x, tm) =
N

∑
j=1

um
j φj(x).

Problem (18) is replaced by the following discrete problem:

N

∑
j=1

um
j
(
s(φj, φi) + a(φj, φi)

)
= l(φi), i = 1, . . . N,

where l(φi) = s(um−1
h , φi)

We have the following discrete system in the matrix form for U = (u1, ..., uN)
T :

(Sm−1 + Am−1)Um = Fm−1,

where Sm and Am are global mass and stiffness matrices:

Sm =
Nc

∑
i=1

Sm,i, Am =
Nc

∑
i=1

Am,i, Fm = SmUm.

Here, Sm,i and Am,i are local matrices in cell Ki:

Am,i = {AKi
l j }, AKi

l j = aKi (φl , φj) =
∫

Ki

k̃m−1∇φl · ∇φj dx,

Sm,i = {SKi
l j }, SKi

l j = sKi (φl , φj) =
∫

Ki

(
c̃m−1 + Dδ̃m−1

)
φl φj dx,

where:

c̃(u) = c1 + η̃(u)(c2 − c1), k̃(u) = k1 + η̃(u)(k2 − k1), δ̃ =
dη̃(u)

du
.

In order to obtain a similar form of discrete system as in the previous section with finite difference
approximation, we suppose that coefficient k̃i is defined in each cell (i = 1, . . . , Nc) and coefficient c̃j is
defined on mesh node (j = 1, . . . , N). We use a trapezoidal integration to obtain a diagonal mass matrix.

4.1. Smoothing on the ∆ Interval

Similarly to the previous section, η̃ and δ̃ are defined in each node of the mesh and calculated
using the given value of function ui on current node xi:

η̃m
i = η̃(um

i ), δ̃m
i = δ̃(um

i ),
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with the following approximations:

• Smoothing on the ∆ interval using the error function:

η̃(u) =
1
2

(
1 + erf

(
u− u∗√

2∆

))
, δ̃(u) =

1√
2π∆

exp
(
− (u− u∗)2

2∆2

)
. (19)

• Linear smoothing on the ∆ interval:

η̃(u) =


1, u ≥ u∗ + ∆,

(u−u∗+∆)
2∆ , u∗ − ∆ < u < u∗ + ∆,
0, u ≤ u∗ − ∆,

δ̃(u) =


0, u ≥ u∗ + ∆,
1

2∆ , u∗ − ∆ < u < u∗ + ∆,
0, u ≤ u∗ − ∆.

(20)

Let nK be the number of vertices in cell K, where nK = 2 for the one-dimensional problem and
nK = 3 for the two-dimensional problem with triangular cells. For the stiffness matrix, we have:

AKi
l j = k̃m−1

Ki

∫
Ki

∇φl · ∇φj dx,

where:
k̃m

Ki
=

nK

∑nK
j=1(k̃

m
j )
−1

, k̃m
j = k1 + η̃m

j (k2 − k1).

For the mass matrix with trapezoidal integration, we have:

SKi
jj =

|Ki|
nK

(
c̃m−1

j + Dδ̃m−1
j

)
, SKi

l j = 0, for l 6= j,

where:
c̃m

j = c1 + η̃m
j (c2 − c1).

Here, coefficients c̃m
j , k̃m

j are defined on the mesh nodes, and k̃m
Ki

is defined on the cell as the
harmonic average of the values on the cell nodes.

4.2. Smoothing in One Mesh Cell

Similar to smoothing in one spatial interval for the one-dimensional problem, we construct
smoothing in one cell of the grid for the general case, where a cell can be of any shape (interval,
triangle, tetrahedron, quadrilateral, etc.).

Let a phase change occur on one mesh cell Ki if (ui − u∗) · (uj − u∗) < 0 for i, j = 1, . . . , nK (nK is
the number of vertices of mesh cell). We define η̃ and δ̃ on cell Ki using a similar approximation by the
values of the function uKi

j in cell Ki (j = 1, . . . , nK). For the stiffness matrix, we have:

AKi
l j = k̃m−1

Ki

∫
Ki

∇φl · ∇φj dx

with:
k̃m

Ki
= k1 + η̃m

Ki
(k2 − k1), (21)

For the mass matrix, we have:

SKi
jj =

|Ki|
nK

c̃m−1
j + |Ki|D δ̃m−1

Ki ,j
, SKi

l j = 0, for l 6= j,

with:

c̃m
j =

c1, uKi ,m
j < u∗,

c2, uKi ,m
j ≥ u∗,

δ̃m
Ki ,j =

dη̃m
Ki

duKi ,m
j

. (22)
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where uKi ,m
j is the value of function u on node j in cell Ki and j, l = 1, . . . , nv. Here, c̃Ki ,m

j is defined

on mesh vertex j in cell Ki using the corresponding value of function u, and k̃m
Ki

is defined on cell Ki.
The coefficient η̃m

Ki
is calculated by taking into account the presence or absence of the phase change

interface in cell Ki.
For the one-dimensional problem with nK = 2, we have cell Ki = [xi, xi+1] with |Ki| = xi+1 − xi = h

and ui = uKi
1 , ui+1 = uKi

2 . Therefore, we have:

η̃Ki =


1, uKi

1 ≥ u∗ and uKi
2 ≥ u∗,

(uKi
2 − u∗)/(uKi

2 − uKi
1 ), uKi

1 < u∗ and uKi
2 > u∗,

(uKi
1 − u∗)/(uKi

1 − uKi
2 ), uKi

1 > u∗ and uKi
2 < u∗,

0, uKi
1 < u∗ and uKi

2 < u∗,

(23)

δ̃Ki ,1 =


0, uKi

1 ≥ u∗ and uKi
2 ≥ u∗,

(uKi
2 − u∗)/(uKi

2 − uKi
1 )2, uKi

1 < u∗ and uKi
2 > u∗,

−(uKi
2 − u∗)/(uKi

1 − uKi
2 )2, uKi

1 > u∗ and uKi
2 < u∗,

0, uKi
1 < u∗ and uKi

2 < u∗,

(24)

δ̃Ki ,2 =


0, uKi

1 ≥ u∗ and uKi
2 ≥ u∗,

−(uKi
1 − u∗)/(uKi

2 − uKi
1 )2, uKi

1 < u∗ and uKi
2 > u∗,

(uKi
1 − u∗)/(uKi

1 − uKi
2 )2, uKi

1 > u∗ and uKi
2 < u∗,

0, uKi
1 < u∗ and uKi

2 < u∗.

(25)

Note that this approximation is equal to the smoothing presented in the previous section for the
one-dimensional formulation using the finite-difference method.

Before the generalization of the smoothing in one mesh cell, we present a brief explanation of the
concept that we used in this method. Let VKi

+ and VKi
− be the volume of thawed and frozen zones in

cell Ki, VKi = |Ki| the volume of the cell, and VKi = VKi
+ + VKi

− . The coefficient η is the unfrozen water
concentration that can be represented as a fraction of the thawed zone from the cell volume:

η̃Ki =
VKi
+

VKi
,

where VKi
+ = VKi for uKi

j ≥ u∗, ∀j = 1, .., nv (η̃ = 1) and VKi
+ = 0 for uKi

j < u∗, ∀j = 1, . . . , nv (η̃ = 0).

In order to calculate the volume of the thawed zone in mesh cell VKi
+ , we use a linear approximation of

the temperature in cell.
In the one-dimensional case, we have:

u(x) = u1φ1(x) + u2φ2(x),

where:
φ1(x) =

x1 − x
x2 − x1

, φ2(x) =
x− x1

x2 − x1
.

Therefore, the location of the phase change interface in cell Ki is the following (see Figure 1):

x∗ = x1 + (x2 − x1)
u∗ − u1

u2 − u1
,

and therefore, we obtain:

η̃Ki =
x∗ − x1

x2 − x1
=

u1 − u∗

u1 − u2
for u1 > u2,
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η̃Ki = 1− x∗ − x1

x2 − x1
= 1− u∗ − u1

u2 − u1
=

u2 − u∗

u2 − u1
for u2 > u1,

for the one-dimensional problem when the phase change occurs in cell Ki, (ui − u∗) · (u2 − u∗) < 0.
In the approximation construction for the two-dimensional case, we use a similar approach, where
we find an interface position on each edge between two nodes and use it to calculate a fraction of the
unfrozen zone in cell Ki. For example, for the case with u1 > u∗, u2 < u∗, and u3 < u∗ (see Figure 1),
we have:

η̃Ki =
VKi
+

VKi
=

(
u1 − u∗

u1 − u2

)(
u1 − u∗

u1 − u3

)
,

where the unfrozen zone volume and the volume of the cell are calculated as the area of corresponding
triangles. Approximations of the η̃ for other cases can be calculated in a similar way. In Figure 1,
we present an illustration of thawed and frozen zones on mesh cell Ki.

Figure 1. Illustration of unfrozen water concentration η in mesh cell Ki. Left: one-dimensional
formulation (1D). Right: two-dimensional formulation (2D).

Finally, for the two-dimensional formulation with triangular cells, we have:

η̃Ki =



1, u1 ≥ u∗, u2 ≥ u∗, u3 ≥ u∗,(
u1−u∗
u1−u2

) (
u1−u∗
u1−u3

)
, u1 ≥ u∗, u2 < u∗, u3 < u∗,

1−
(

u1−u∗
u1−u2

) (
u1−u∗
u1−u3

)
, u1 < u∗, u2 ≥ u∗, u3 ≥ u∗,(

u3−u∗
u3−u1

) (
u3−u∗
u3−u2

)
, u1 < u∗, u2 < u∗, u3 ≥ u∗,

1−
(

u3−u∗
u3−u1

) (
u3−u∗
u3−u2

)
, u1 ≥ u∗, u2 ≥ u∗, u3 < u∗,(

u2−u∗
u2−u1

) (
u2−u∗
u2−u3

)
, u1 < u∗, u2 ≥ u∗, u3 < u∗,

1−
(

u2−u∗
u2−u1

) (
u2−u∗
u2−u3

)
, u1 ≥ u∗, u2 < u∗, u3 ≥ u∗,

0, u1 < u∗, u2 < u∗, u3 < u∗,

(26)

δ̃Ki ,1 =



0, u1 ≥ u∗, u2 ≥ u∗, u3 ≥ u∗,
(u2−u∗)
(u2−u1)2

(
u1−u∗
u3−u1

)
+
(

u2−u∗
u2−u1

)
(u1−u∗)
(u3−u1)2 , u1 ≥ u∗, u2 < u∗, u3 < u∗,

− (u2−u∗)
(u2−u1)2

(
u1−u∗
u3−u1

)
−
(

u2−u∗
u2−u1

)
(u1−u∗)
(u3−u1)2 , u1 < u∗, u2 ≥ u∗, u3 ≥ u∗,(

u3−u∗
(u3−u1)2

) (
u3−u∗
u3−u2

)
, u1 < u∗, u2 < u∗, u3 ≥ u∗,

− (u3−u∗)
(u3−u1)2

(
u3−u∗
u3−u2

)
, u1 ≥ u∗, u2 ≥ u∗, u3 < u∗,

(u2−u∗)
(u2−u1)2

(
u2−u∗
u2−u3

)
, u1 < u∗, u2 ≥ u∗, u3 < u∗,

− (u2−u∗)
(u2−u1)2

(
u2−u∗
u2−u3

)
, u1 ≥ u∗, u2 < u∗, u3 ≥ u∗,

0, u1 < u∗, u2 < u∗, u3 < u∗.

(27)
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Here, the values of δ̃Ki ,2 and δ̃Ki ,3 are calculated in a similar way. The presented method can be
extended to other types of elements.

We obtained an approximation of unfrozen water concentration with one mesh cell as a function
of cell temperatures on nodes. The proposed methods work with unstructured meshes that can handle
complex computational domains.

5. Numerical Results

We present the results for the proposed difference schemes on one- and two-dimensional examples.
We solve the two-phase Stefan problem, which serves as a mathematical model for the pore water
freezing/thawing process with input data specified in the international SI system:

k1 = 2.21 W/(m ·K), k2 = 0.59 W/(m ·K),

c1 = 1.89× 106 J/(m3 ·K), c2 = 4.12× 106 J/(m3 ·K),

D = 3.33× 108 J/(m3 ·K).

The phase change temperature is u∗ = 0 ◦C. In the calculations, we use a linearized difference
scheme, where nonlinear coefficients are calculated using a solution from the previous time layer.

We present numerical results for the three scheme:

• erf-smoothing: the scheme with smoothing using the error function on the ∆ interval.
• delta-smoothing: the scheme with linear smoothing on the ∆ interval.
• h-smoothing: the scheme with smoothing in one spatial interval (mesh cell).

The first and third approximations are based on the definition of a slushy zone interval with
parameter ∆.

5.1. One-Dimensional Problem

The computational domain size L = 8 m. We simulate for T = 107 s with initial condition:

u0(x) = u0, t = 0, x ∈ [0, L],

with u0 = 5 ◦C.
The boundary conditions are the following:

u(0, t) = g,
∂u
∂x

(L, t) = 0, t > 0,

where we consider two test cases with g = −5 ◦C and g = −15 ◦C.
For a one-dimensional problem, an exact solution of the two-phase Stefan problem is defined

using the phase change interface location ξ = ξ(t):

ξ = γ
√

t,

where γ is the coefficient of proportionality (m/s0.5).
The exact solution has the following form [13]:

u(x, t) =

g
[
erf
(

ξ

2a1
√

t

)
− erf

(
x

2a1
√

t

)]
/ erf

(
ξ

2a1
√

t

)
, x ≥ ξ(t),

u0

[
erf
(

x
2a2
√

t

)
− erf

(
ξ

2a2
√

t

)]
/
[
1− erf

(
ξ

2a2
√

t

)]
, x < ξ(t).
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Using a phase change interface condition (2), we find γ as the root of the transcendental equation:

k1

a1
g

exp
(
−
(

γ
2a1

)2
)

erf
(

γ
2a1

) +
k2

a2
u0

exp
(
−
(

γ
2a2

)2
)

1− erf
(

γ
2a2

) + γD
√

π

2
= 0,

where a1 =
√

k1/c1, a2 =
√

k2/c2, and erf is the error function [13–16]. The value of γ is calculated
using the iterative secant method with the accuracy of ε < 10−12. We have γ = 0.00023897230346 for
g = −5 and γ = 0.0004188066281859222 for g = −15.

In Figure 2, we present exact and numerical solutions at the final time T = 107 s ≈ 115 days and
a phase change interface location ξ(t). We present the results of the numerical solution of the problem
using three types of smoothing. Numerical calculations were performed with n = 200 (mesh by space)
and m = 200 for the time approximation. We consider the case with g = −5 ◦C and g = −15 ◦C.
The smoothing parameter is chosen constant ∆ = 0.3 throughout the entire computation time t ∈ (0, T].
In the left figure, a solution at the final time is presented, where we see that the first derivative of the
function has a discontinuity of the first kind with respect to spatial variable x at u = u∗, which agrees
with the Stefan condition. In the right figure, we depict a phase change interface location by time.
In numerical calculations, the phase change interface is found through the linear interpolation method
in the interval, where the sought function has different signs at the ends (um

i · um
i+1) < 0. We observe

that the numerical solution both for the temperature at the final time and for the phase change interface
location is accurate for smoothing using error functions (erf-smoothing) and for smoothing in one
spatial interval (h-smoothing). We note that the novel method based on smoothing in one spatial
interval is more accurate than the scheme with approximation using the ∆ parameter, that is, in general,
it should be carefully chosen for each test case and depends on the mesh size, number of time steps,
and speed of the phase change interface propagation.

(a) Boundary condition: g = −5.

(b) Boundary condition: g = −15.

Figure 2. One-dimensional problem. Exact solution (black color). Numerical solutions using error
function (erf) smoothing (blue color), smoothing in one spatial interval (red color), and linear smoothing
in the ∆ interval (green color). Left: solution at the final time. Right: phase change interface location.
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Next, we investigate the influence of the mesh size and the number of time steps on the accuracy
of the presented methods. We consider n = 25, 50, 100, 200 for the spatial mesh and m = 50, 100, 200 for
the time approximation. We perform simulations and calculate errors for two smoothing parameters
∆ = 0.3 and ∆ = 0.6 in the erf-smoothing and delta-smoothing methods. We calculate the relative L2

errors for a solution and phase change interface:

ee(uT) =

√
∑i(yi(T)− u(xi, T))2

∑i u(xi, T)2 × 100%, e f (uT) =

√
∑i(yi(T)− ũi(T))2

∑i(ũi(T))2 × 100%,

ee(γ) =

√
∑j(ξ j − ξe(tj))2

∑j ξe(tj)2 × 100%, e f (γ) =

√
∑j(ξ j − ξ f (tj))2

∑j ξ f (tj)2 × 100%,

where y, ξ are the numerical solutions, u(x, t), ξe(t) are the exact solutions, and ũ, ξ f are the solutions
on the very fine grid with n = m = 800.

In Tables 1–3, we present the relative errors for the three methods: erf-smoothing, h-smoothing,
and linear delta-smoothing. We present relative errors in % and investigate the influence of the
boundary condition, smoothing interval ∆, and the space and time mesh parameters on the accuracy
of the numerical solution. In Table 1, the relative errors for the scheme with smoothing using an
error function are presented (erf-smoothing) for ∆ = 0.3 and ∆ = 0.6, where errors for g = −5 are
presented on the left and for g = −15 presented on the right. In Table 2, the results for the scheme with
smoothing in one spatial interval (h-smoothing) are presented. Relative errors for the scheme with
linear smoothing on the ∆ interval are presented in Table 3 (h-smoothing) for ∆ = 0.3 and ∆ = 0.6.
From the errors between the exact and numerical solutions (ee(uT) and ee(γ)), we observe that the
erf-smoothing and linear delta-smoothing methods are highly dependent on parameter ∆. The error
decreases along with the spatial mesh refining as the number of time layers increases.

Table 1. One-dimensional problem with erf-smoothing. Relative L2 error for the temperature at
the final time and phase change interface location with respect to the exact solution and a very fine
grid solution.

g = −5
n m ee(uT) ee(γ) e f (uT) e f (γ)

∆ = 0.3

25 50 8.665 57.564 9.786 57.766
50 50 7.962 53.930 9.059 54.133
100 50 0.603 9.985 1.195 10.152
200 50 1.657 1.209 0.468 1.146

25 100 5.747 36.560 6.781 36.752
50 100 3.625 30.125 4.752 30.310
100 100 1.116 1.575 0.291 1.718
200 100 1.478 0.889 0.238 0.783

25 200 2.039 13.374 2.889 13.517
50 200 2.194 19.971 3.285 20.147
100 200 1.755 18.043 2.709 18.220
200 200 1.059 2.812 0.346 2.963

∆ = 0.6

25 50 4.364 11.751 3.196 11.694
50 50 3.463 4.871 1.206 4.781
100 50 3.253 2.253 0.532 2.169
200 50 3.125 0.900 0.299 0.883

25 100 4.536 13.432 3.293 13.367
50 100 3.660 6.740 1.330 6.633
100 100 2.813 2.559 0.278 2.616
200 100 3.059 0.738 0.170 0.674
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Table 1. Cont.

g = −15
n m ee(uT) ee(γ) e f (uT) e f (γ)

25 200 4.510 13.737 3.278 13.670
50 200 3.561 6.637 1.219 6.529

100 200 3.199 2.567 0.386 2.450
200 200 3.072 0.924 0.147 0.806

∆ = 0.3

25 50 29.267 85.669 30.360 87.115
50 50 24.491 68.825 25.694 70.129

100 50 2.556 2.614 1.691 2.923
200 50 3.855 4.075 2.880 3.587

25 100 12.403 34.199 13.338 35.294
50 100 6.643 24.756 7.729 25.782

100 100 3.129 14.451 4.188 15.393
200 100 2.387 2.329 1.309 1.982

25 200 2.641 16.891 3.888 17.781
50 200 8.379 31.700 9.514 32.780

100 200 7.077 24.754 8.161 25.780
200 200 1.805 1.509 0.612 1.098

∆ = 0.6

25 50 5.451 5.759 5.157 5.718
50 50 3.335 3.963 1.644 4.004

100 50 3.883 3.273 2.051 3.235
200 50 3.968 2.998 2.025 2.815

25 100 3.851 6.643 3.920 6.910
50 100 1.587 9.790 1.916 10.239

100 100 2.811 2.737 0.625 2.966
200 100 3.396 2.268 1.166 1.992

25 200 5.495 8.275 5.050 8.042
50 200 3.332 4.132 1.616 3.848

100 200 3.196 2.468 0.908 2.192
200 200 3.054 1.555 0.594 1.253

Table 2. One-dimensional problem with h-smoothing. Relative L2 error for the temperature at the final
time and phase change interface location with respect to the exact solution and a very fine grid solution.

g = −5
n m ee(uT) ee(γ) e f (uT) e f (γ)

25 50 1.841 5.102 1.651 5.647
50 50 0.824 2.902 0.641 3.497

100 50 0.519 2.864 0.326 3.415
200 50 0.960 1.726 0.766 1.481

25 100 1.686 5.060 1.504 5.596
50 100 0.610 2.580 0.448 3.177

100 100 0.374 1.598 0.179 2.204
200 100 0.490 1.051 0.302 1.447

25 200 1.750 4.555 1.567 5.035
50 200 0.616 2.131 0.454 2.703

100 200 0.352 1.142 0.157 1.729
200 200 0.156 0.813 0.049 1.326

g = −15
n m ee(uT) ee(γ) e f (uT) e f (γ)

25 50 0.467 8.617 1.478 10.688
50 50 0.821 4.320 0.521 6.231

100 50 1.794 2.198 0.565 3.629
200 50 4.215 4.275 2.979 3.140

25 100 0.544 7.970 1.557 9.978
50 100 0.827 3.373 0.507 5.273

100 100 1.739 1.308 0.476 1.469
200 100 1.896 1.700 0.645 1.308

25 200 0.557 7.558 1.504 9.549
50 200 0.426 3.459 0.915 5.404

100 200 0.740 1.450 0.545 3.282
200 200 0.910 0.799 0.356 1.649
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Table 3. One-dimensional problem with delta-smoothing. Relative L2 error for temperature at the final
time and phase change interface location with respect to the exact solution and a very fine grid solution.

g = −5
n m ee(uT) ee(γ) e f (uT) e f (γ)

∆ = 0.3

25 50 19.718 90.023 20.149 88.656
50 50 8.422 39.373 8.826 38.419
100 50 2.789 20.121 3.178 19.112
200 50 1.228 11.510 1.560 10.564

25 100 4.133 20.358 4.559 19.400
50 100 3.817 25.213 4.255 24.123
100 100 4.897 33.164 5.303 32.035
200 100 3.086 24.004 3.467 22.928

25 200 3.801 15.419 4.188 14.540
50 200 5.337 37.751 5.809 36.612
100 200 2.102 13.071 2.411 12.129
200 200 0.431 6.272 0.745 5.244

∆ = 0.6

25 50 8.393 31.522 9.007 30.953
50 50 1.764 2.935 1.257 2.982
100 50 0.957 9.480 1.298 8.953
200 50 0.868 5.798 0.668 5.290

25 100 3.388 12.386 3.494 12.402
50 100 2.153 9.925 2.511 9.401
100 100 3.092 25.393 3.997 24.806
200 100 1.195 1.599 0.189 1.069

25 200 2.873 10.084 3.473 9.805
50 200 2.238 9.417 2.589 8.893
100 200 1.369 1.684 0.296 2.024
200 200 1.117 2.739 0.305 2.189

g = −15
n m ee(uT) ee(γ) e f (uT) e f (γ)

∆ = 0.3

25 50 55.431 102.593 55.776 102.265
50 50 43.798 104.751 44.197 104.378
100 50 3.391 9.541 3.651 9.250
200 50 0.774 4.601 1.077 4.341

25 100 30.288 69.374 30.599 69.026
50 100 16.591 46.798 16.940 46.499
100 100 3.516 9.969 3.798 9.654
200 100 2.262 7.067 2.513 6.768

25 200 2.343 7.735 2.730 7.711
50 200 16.595 48.645 16.944 48.349
100 200 15.455 42.005 15.826 41.679
200 200 0.880 3.063 1.046 2.723

∆ = 0.6

25 50 31.869 63.799 32.609 63.736
50 50 1.384 5.835 1.789 5.774
100 50 0.655 3.723 1.154 3.659
200 50 1.179 2.218 0.364 2.154

25 100 3.711 19.023 4.782 18.960
50 100 8.162 19.368 8.695 19.299
100 100 3.725 12.748 4.387 12.681
200 100 1.294 6.778 1.675 6.710

25 200 2.821 7.808 3.557 7.752
50 200 8.437 24.475 9.144 24.414
100 200 1.143 1.521 0.402 1.451
200 200 1.113 1.113 0.276 1.032
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The errors between a very fine grid solution (m = n = 800) and a numerical solution for different
parameters m and n (e f (uT) and e f (γ)) demonstrate the convergence of the solution depending on m
and n. We observe that for the coarse parameters m and n, we can obtain results with a large error.
For example, we have e f (uT) = 25% and e f (γ) = 70% for ∆ = 0.3, g = −15, and m = n = 50 for the
erf-smoothing method. For larger ∆, we can obtain more stable results. However, for a finer mesh
and more time steps, the parameter ∆ = 0.6 is too large to obtain good approximation. For example,
we have e f (uT) = 3% for ∆ = 0.6 and e f (uT) = 1% for ∆ = 0.3 in the test problem with g = −5
and m = n = 200. A new method with smoothing in one spatial interval (h-smoothing) does not
have parameter ∆ and provides very good results with small errors and convergence depending on
parameters m and n. This method automatically determines a sufficient smoothing parameter.

A graphical illustration of the errors from Tables 1–3 for the presented methods is shown in
Figures 3 and 4. We depict errors for m = 100 and m = 200 with different spatial mesh parameters
n and ∆. The h-smoothing scheme provides accurate results on a coarse spatial grid at large time
steps. We observe that the erf-smoothing method is less sensitive to the parameter ∆ and provides
sufficiently good results with a good choice of the parameter ∆. By comparing the results for g = −5
and g = −15 in Figures 3 and 4, we see that for a larger temperature gradient, we obtain worse results.
In the erf-smoothing and delta-smoothing methods, we should use a finer mesh and more time steps
for better approximation with a good choice of parameter ∆. The scheme with smoothing in one
spatial interval provides an accurate numerical solution with the minimal smoothing interval, which is
different in each spatial interval and time layer.

(a) ∆ = 0.3.

(b) ∆ = 0.6.

Figure 3. One-dimensional problem. Boundary conditions g = −5. Numerical solutions using error
function smoothing (blue color), smoothing in one spatial interval (red color), and linear smoothing
using the ∆ interval (green color). Solid line for m = 200 and dashed line for m = 100. Left: relative L2

errors for the solution at the final time. Right: relative L2 errors for the phase change interface location.
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(a) ∆ = 0.3.

(b) ∆ = 0.6.

Figure 4. One-dimensional problem. Boundary conditions g = −15. Numerical solutions using error
function smoothing (blue color), smoothing in one spatial interval (red color), and linear smoothing
using the ∆ interval (green color). Solid line for m = 200 and dashed line for m = 100. Left: relative L2

errors for the solution at the final time. Right: relative L2 errors for the phase change interface location.

5.2. Two-Dimensional Problem

In this section, we present numerical results for a two-dimensional heat problem. We consider
the two-phase Stefan problem with similar parameters as in the previous section. We consider
computational domain Ω = [L1 × L2] with size L1 = L2 = 2 m and simulate for T = 106 s with initial
condition u0 = 5 ◦C. As boundary conditions, we set g = −5 ◦C and g = −15 ◦C for x ∈ Γ1 = {x ∈
∂Ω : x = 0, y = 0} and zero flux on other boundaries, ∂Ω/Γ1. The computational mesh is uniform
with triangular cells with size n = n1 × n2. Numerical calculations are performed with m = 200 for
the time approximation. We present the results of the numerical solution of the problem using three
types of smoothing schemes for n = n1 × n2, n1 = n2 = 25, 50, 100, and 100.

We calculate relative L2 errors for the solution at the final time:

ee(uT) =

√
∑i(yi(T)− u f ,hs(xi, T))2

∑i u f ,hs(xi, T)2 , e f (uT) =

√
∑i(yi(T)− ũi(T))2

∑i(ũi(T))2 ,

where y is the numerical solution and ũ is the solution on the fine grid with n = m = 400 using
the current method. Here, for u f ,hs(x, T), we use a reference solution with the h-smoothing method.
We compare the results with h-smoothing to show that this method provides an accurate solution and
does not depend on the parameter ∆ as in the previous examples for the one-dimensional problem.

In Figure 5, we present the numerical solution at the final time for g = −5 ◦C and g = −15 ◦C.
In the left figure, we depict a temperature field at the final time with an isotherm of u = u∗ (phase
change interface). In the right figure, we show a solution on line x1 = x2, where the line is depicted in
yellow color in the left figure. The phase change interface at the final time is depicted for three types of
smoothing and indicated in different colors. Here, we use a similar color in the right figure to plot
the temperature along the line x1 = x2. Numerical calculations are performed with n = 200 (mesh
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by space) and m = 200 for the time approximation. The smoothing parameter is chosen as constant
∆ = 0.3.

(a) Boundary condition: g = −5.

(b) Boundary condition: g = −15.

Figure 5. Two-dimensional problem. Numerical solutions using error function smoothing (blue color),
smoothing in one spatial interval (red color), and linear smoothing using the ∆ interval (green color).
Left: solution at the final time. Right: solution on line x1 = x2 at the final time.

In Tables 4–6, we investigate the influence of the mesh size (n) on the accuracy of the presented
methods. Time step number m is fixed, m = 200. We consider n = 25, 50, 100, 200 for the spatial mesh.
In Table 4, we present the relative errors for the erf-smoothing scheme with ∆ = 0.15, 0.3, and 0.6. In the
left table, we present the errors for boundary condition g = −5. The table at the right demonstrates the
results for g = −15. We present relative errors in % and investigate the influence of mesh size on the
accuracy of the numerical solution. In Table 5, the results for the h-smoothing scheme are presented
for g = −5 and −15. Relative errors for delta-smoothing are shown in Table 6. The first error ee(uT)

is an error between the current solution and a reference solution using the h-smoothing scheme on
mesh m = n = 400. We observe that in order to obtain good results using the erf-smoothing scheme,
we should take smaller ∆ for g− 5 than for the test case with g = −15. For example, we have 6.5% of
the error for ∆ = 0.6 and 1.2% of the error for ∆ = 0.15 in the test case with g = −5. Table 6 shows
the optimal value of ∆ = 0.3 for g = −5 and ∆ = 0.6 for g = −15. For the h-smoothing scheme with
smoothing in one spatial interval, we obtain good results for both test cases with g = −5 and g = −15.

The second error e f (uT) illustrates the convergence of the solution with increasing mesh
parameters m and n to the reference solution on the fine grid m = n = 400 using the corresponding
method. We observe that both errors e f (uT) and ee(uT) are sensitive to the size of the mesh, where we
obtain a large error for a very coarse grid n1 = n2 = 25. We obtain accurate results for n = 50, 100,
and 100 using the h-smoothing method.
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Table 4. Two-dimensional problem with erf-smoothing. Relative L2 error for the temperature at the
final time with respect to the finest grid solution using the presented method (e f (uT)) and h-smoothing
(ee(uT)).

g = −5
n m ee(uT) e f (uT)

∆ = 0.15

25 × 25 200 6.671 6.430
50 × 50 200 4.252 4.073

100 × 100 200 1.540 1.079
200 × 200 200 1.211 0.329

∆ = 0.3

25 × 25 200 7.339 6.083
50 × 50 200 4.714 2.957

100 × 100 200 3.851 1.467
200 × 200 200 3.263 0.552

∆ = 0.6

25 × 25 200 9.585 5.538
50 × 50 200 7.472 2.080

100 × 100 200 7.022 1.036
200 × 200 200 6.554 0.281

g = −15
n m ee(uT) e f (uT)

∆ = 0.15

25 × 25 200 3.409 3.664
50 × 50 200 1.633 1.598

100 × 100 200 1.259 1.923
200 × 200 200 2.059 1.226

∆ = 0.3

25 × 25 200 4.206 4.484
5 × 500 200 1.567 1.348

100 × 100 200 2.360 2.426
200 × 200 200 1.967 1.376

∆ = 0.6

25 × 25 200 6.636 6.360
50 × 50 200 4.368 3.427

100 × 100 200 3.891 2.013
200 × 200 200 3.738 0.833

Table 5. Two-dimensional problem with h-smoothing. Relative L2 error for the temperature at the final
time with respect to the finest grid solution using the presented method (e f (uT) = ee(uT)).

g = −5
n m ee(uT) e f (uT)

25 × 25 200 4.338 4.338
50 × 50 200 1.760 1.760

100 × 100 200 0.574 0.574
200 × 200 200 0.178 0.178

g = −15
n m ee(uT) e f (uT)

25 × 25 200 2.078 2.078
50 × 50 200 1.293 1.293

100 × 100 200 1.029 1.029
200 × 200 200 0.145 0.145
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Table 6. Two-dimensional problem with delta-smoothing. Relative L2 error for the temperature at the
final time with respect to the finest grid solution using the presented method (e f (uT)) and h-smoothing
(ee(uT)).

g = −5
n m ee(uT) e f (uT)

∆ = 0.15

25 × 25 200 6.151 5.598
50 × 50 200 11.598 10.937

100 × 100 200 10.485 9.836
200 × 200 200 7.338 6.668

∆ = 0.3

25 × 25 200 3.647 3.818
50 × 50 200 3.782 3.556

100 × 100 200 4.261 3.951
200 × 200 200 1.374 0.919

∆ = 0.6

25 × 25 200 4.748 4.148
50 × 50 200 3.968 2.340

100 × 100 200 3.153 0.486
200 × 200 200 3.146 0.304

g = −15
n m ee(uT) e f (uT)

∆ = 0.15

25 × 25 200 27.421 20.040
50 × 50 200 27.005 19.437

100 × 100 200 25.048 17.213
200 × 200 200 9.524 2.822

∆ = 0.3

25 × 25 200 12.662 9.941
50 × 50 200 18.554 15.872

100 × 100 200 15.926 13.138
200 × 200 200 5.139 2.203

∆ = 0.6

25 × 25 200 2.991 2.856
50 × 50 200 4.883 3.217

100 × 100 200 1.968 0.909
200 × 200 200 2.121 0.692

5.3. Geometry with an Unstructured Grid

The main advantage of the finite element method is that it provides the possibility of
problem solving in complex geometries using the construction of the unstructured mesh with
triangular elements.

We consider the computational domain with size L1 = 6 m with a rough boundary and two
circle perforations. In Figure 6, we depict the computational domain and unstructured mesh. In the
left figure, we present the computational domain. The unstructured grid with triangular elements
is presented in the right figure. We depict a rough top boundary Γ1 in green color, where we set the
Dirichlet boundary conditions:

u(x, t) = g, x ∈ Γ1.
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Figure 6. Geometry with unstructured grid. Left: computational domain (gray color), top boundary
(green), circle one (red), and circle two (orange). Right: unstructured mesh with triangular elements.

Similar to the previous results, we consider g = −5 and g = −15. On the circle perforation, we set
the Robin-type boundary conditions:

−k
∂u
∂x

(x, t) = α(u− g1), x ∈ Γt1, −k
∂u
∂x

(x, t) = α(u− g2), x ∈ Γt2,

where we set α = 20. In Figure 6, the first circle is indicated in red color with g1 = 10, and the second
circle is indicated in orange color with g2 = 15. Circle perforations illustrate a pipe influence to the
temperature distribution. The pipes contain fluid with temperature g1 (first) and g2 (second) with
heat transfer parameter α. The radius of the first circle is r1 = 0.1, and the radius of the second one is
r2 = 0.2. On other boundaries (blue color), we set the Neumann boundary condition:

−k
∂u
∂x

(x, t) = 0, x ∈ ∂Ω/(Γ1 ∪ Γt1 ∪ Γt1.

We simulate for T = 106 s with initial condition u0 = 2 ◦C. A computational mesh is fixed and
contains n vertices, n = 18,242.

The numerical solution at the final time for g = −5 ◦C and g = −15 ◦C is presented in
Figures 7 and 8, respectively. In the left figure, we depict the temperature field at the final time
with the isotherm of u = u∗ (phase change interface). In the right figure, we show the solution
on lines x1 = 2.5 (line position is indicated in yellow color in the left figure) and x1 = 4.2 (orange
color in the left figure). The phase change interface at the final time is depicted for three types of
smoothing in different colors in the left figure, and we use a similar color in the right figure to plot the
temperature along lines. Numerical calculations are performed for ∆ = 0.3 with m = 200 for the time
approximation.

We calculate similar errors for the solution at the final time (ee(uT) and e f (uT)). The error
e f (uT) is calculated using the solution with m = 400 using the current method. The error e f (uT) is
calculated using the reference solution with the h-smoothing method. In Tables 7–9, we investigate the
influence of the number of time steps m and ∆ on the accuracy of the presented methods. We consider
m = 50, 100, 200 and ∆ = 0.15, 0.3, 0.6.

In Table 7, we present relative errors for the erf-smoothing scheme with ∆ = 0.15, 0.3, and 0.6.
In the left table, we present errors for boundary condition g = −5. In the right table, results for
g = −15 are shown. In Table 8, the results for the h-smoothing scheme are presented for g = −5 and
−15. The relative errors for delta-smoothing are shown in Table 9 for different values of m and ∆. We
observe good results for the erf-smoothing scheme, when we take ∆ = 0.15 for g = −5 and ∆ = 0.3 for
g = −15. In the delta-smoothing scheme, we have good results for ∆ = 0.3 for g = −5 and g = −15.
We obtain an accurate solution for the scheme with h-smoothing for m = 50, 100, and 200 for g = −5
with less then one percent of error. The scheme with h-smoothing works very well for g = −15 with
less than one percent for m = 200.
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(a) Solution at the final time with isotherm u = u∗.

(b) Solution on line x1 = 2.5 (left) and x1 = 4.2 (right).

Figure 7. Geometry with the unstructured grid for g = −5. Numerical solutions using error function
smoothing (blue color), smoothing in one spatial interval (red color), and linear smoothing using the ∆
interval (green color). Yellow line: x1 = 2.5. Orange line: x1 = 4.2.

(a) Solution at the final time with isotherm u = u∗.

(b) Solution on line x1 = 2.5 (left) and x1 = 4.2 (right).

Figure 8. Geometry with the unstructured grid for g = −15. Numerical solutions using error function
smoothing (blue color), smoothing in one spatial interval (red color), and linear smoothing using the ∆
interval (green color). Yellow line: x1 = 2.5. Orange line: x1 = 4.2.
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Table 7. Geometry with unstructured grid with delta-smoothing. Relative L2 error for the temperature
at the final time and phase change interface location with respect to the exact solution and a very fine
grid solution.

g = −5
n m ee(uT) e f (uT)

∆ = 0.15

18,242 50 1.753 0.589
18,242 100 1.871 0.443
18,242 200 1.857 0.301

∆ = 0.3

18,242 50 3.052 0.825
18,242 100 3.249 0.322
18,242 200 3.366 0.086

∆ = 0.6

18,242 50 7.075 0.960
18,242 100 7.286 0.430
18,242 200 7.407 0.144

g = −15
n m ee(uT) e f (uT)

∆ = 0.15

18,242 50 3.934 3.257
18,242 100 3.087 2.318
18,242 200 1.923 1.007

∆ = 0.3

18,242 50 2.487 1.759
18,242 100 2.192 1.189
18,242 200 1.894 0.548

∆ = 0.6

18,242 50 3.422 0.797
18,242 100 3.499 0.486
18,242 200 3.534 0.210

Table 8. Geometry with the unstructured grid with h-smoothing. Relative L2 error for the temperature
at the final time and phase change interface location with respect to the exact solution and a very fine
grid solution.

g = −5
n m ee(uT) e f (uT)

18,242 50 0.877 0.877
18,242 100 0.515 0.515
18,242 200 0.196 0.196

g = −15
n m ee(uT) e f (uT)

18,242 50 3.355 3.355
18,242 100 1.992 1.992
18,242 200 0.821 0.821
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Table 9. Geometry with the unstructured grid with delta-smoothing. Relative L2 error for the
temperature at the final time and phase change interface location with respect to the exact solution and
a very fine grid solution.

g = −5
n m ee(uT) e f (uT)

∆ = 0.15

18,242 50 2.833 1.361
18,242 100 2.684 0.909
18,242 200 2.357 0.570

∆ = 0.3

18,242 50 1.556 0.721
18,242 100 1.500 0.376
18,242 200 1.500 0.167

∆ = 0.6

18,242 50 2.941 0.951
18,242 100 3.032 0.401
18,242 200 3.113 0.105

g = −15
n m ee(uT) e f (uT)

∆ = 0.15

18,242 50 3.832 2.351
18,242 100 4.459 1.009
18,242 200 4.356 0.892

∆ = 0.3

18,242 50 1.489 2.190
18,242 100 1.132 1.221
18,242 200 1.416 0.500

∆ = 0.6

18,242 50 1.510 1.177
18,242 100 1.483 0.647
18,242 200 1.552 0.273

We present and investigate three schemes: smoothing on the ∆ interval using the error function
(erf-smoothing), linear smoothing on the ∆ interval (delta-smoothing), and smoothing in one mesh
cell (h-smoothing). The first algorithm (erf-smoothing) is based on the analytical spreading of the
point source function and smoothing of discontinuous coefficients. The algorithm with smoothing in
one mesh cell (h-smoothing) provides a minimal length of the smoothing interval that is calculated
automatically for the given temperature values on the mesh at a given time layer. The third scheme
(delta-smoothing) is a convenient scheme based on smoothing using linear approximation on the ∆
interval. We study the proposed schemes on one-dimensional and two-dimensional model problems.
We consider a problem with two values of the boundary conditions on different spatial and time
meshes. We present errors for the methods with smoothing on the ∆ interval for different values of the
smoothing interval parameter ∆, which is fixed and given as a constant value. Numerical results show
that the smoothing scheme with the minimal smoothing interval shows its computational efficiency
and provides good results.



Mathematics 2020, 8, 1924 24 of 25

6. Conclusions

In this work, we consider the two-phase Stefan problem, which describes the heat transfer
problems with phase change. In a two-phase formulation, the mathematical model is defined in the
whole domain, which contains frozen and thawed zones.

The main problem is associated with the sharp phase change interface. For the numerical solution
of the problem, we present and investigate schemes with smoothing in one spatial interval (cell)
and smoothing on the ∆ interval using the linear function and the error function. We observe that
smoothing with the error function provides better results with smaller errors than linear smoothing
on the ∆ interval. However, the novel smoothing on one spatial interval (cell) gives better results,
does not depend on the parameter ∆, and can automatically smooth the coefficient in one mesh cell.
We generalize the presented methods for the two-dimensional formulation of the problem and present
results for two geometries with structured and unstructured meshes.
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