IX All-Russian Student Olympiad in Mathematics with International Participation

1. Find

$$
\lim _{t \rightarrow+\infty} t \sum_{k=1}^{+\infty} \frac{1}{k^{2}+t^{2}}
$$

2. Let $f(x)=19^{x}-13^{x}-3^{2 x}+3^{x}$. Find All real roots of the equation $f(x)=0$.
3. Prove that for any continuous non-decreasing function $g:[0,1] \rightarrow \mathbb{R}$ inequality

$$
\frac{1}{2024} \int_{0}^{1} g(x) d x \leq \int_{0}^{1} x^{2023} g(x) d x
$$

is true. Find all functions for which equality will be true.
4. Find

$$
\int_{L} \frac{z^{2}}{z^{3}-1} d z
$$

where $L-$ simple closed loop, such that $|\operatorname{Re} z|+|\operatorname{Im} z|=1$.
5. A circle ω_{0} of unit radius touches both branches of the parabola $y^{2}=p x, p>0$. Based on ω_{0}, a sequence of circles ω_{k} is constructed such that ω_{k} externally touches the circle ω_{k-1} and both branches of the parabola, or the vertex of the parabola. Find the smallest value of n for which the circle ω_{n} touches the vertex of the parabola
6. All the numbers of $\prod_{i=1}^{k} p_{i}^{m_{i}}$, are written in ascending order, where p_{i} is distinct fixed prime numbers, $m_{i} \in \mathbb{Z}_{\geq 0}$. Let $f_{k}(n)$ be a function that returns the n -th number on the board. Find the limit

$$
\lim _{n \rightarrow \infty} f_{k}(n)^{n^{-1 / k}}
$$

7. Let $\left\{a_{i}\right\}_{i=1}^{k}$ be natural numbers so that $1 \leq a_{i} \leq N$. In addition, it is known that $\sum_{i=1}^{k} \sqrt{a_{i}}$ is not an integer. Let us denote that $\|x\|$ is the distance to the nearest integer. Prove that there is a constant c_{k} independent of N so that

$$
\left\|\sum_{i=1}^{k} \sqrt{a_{i}}\right\| \geq c_{k} N^{1 / 2-2^{k-1}}
$$

